cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A376366 The number of non-unitary prime divisors of the cubefree numbers.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 21 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[k_] := Module[{e = If[k == 1, {}, FactorInteger[k][[;; , 2]]]}, If[AllTrue[e, # < 3 &], Count[e, 2], Nothing]]; Array[f, 150]
  • PARI
    lista(kmax) = {my(e, is); for(k = 1, kmax, e = factor(k)[, 2]; is = 1; for(i = 1, #e, if(e[i] > 2, is = 0; break)); if(is, print1(#select(x -> x == 2, e), ", ")));}

Formula

a(n) = A056170(A004709(n)).
a(n) = A369427(A004709(n)).
Sum_{A004709(k) <= x} a(k) = c * x + O(sqrt(x)/log(x)), where c = (1/zeta(3)) * Sum_{p prime} ((p-1)/(p^3-1)) = 0.24833233043359932037... (Das et al., 2025).
a(n) = log_2(A382419(n)). - Amiram Eldar, Mar 25 2025
Sum_{k=1..n} a(k) ~ c * n, where c = Sum_{p prime} ((p-1)/(p^3-1)) = 0.29850959207541746... - Vaclav Kotesovec, Mar 25 2025 (according to the above formula)
From Amiram Eldar, Apr 05 2025: (Start)
a(n) = A046660(A004709(n)).
a(n) = A368779(n) - A376365(n). (End)

A382421 The product of exponents in the prime factorization of the noncubefree numbers.

Original entry on oeis.org

3, 4, 3, 3, 5, 3, 4, 3, 3, 6, 6, 4, 4, 3, 5, 3, 6, 4, 3, 3, 7, 3, 3, 8, 3, 5, 4, 3, 4, 3, 3, 6, 6, 4, 9, 5, 3, 4, 5, 3, 3, 8, 3, 3, 4, 3, 10, 3, 3, 4, 3, 6, 8, 3, 4, 3, 3, 3, 5, 6, 4, 3, 3, 3, 7, 6, 8, 4, 3, 5, 3, 12, 3, 6, 3, 3, 4, 3, 5, 5, 3, 4, 6, 6, 9, 3, 3
Offset: 1

Views

Author

Amiram Eldar, Mar 25 2025

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Times @@ FactorInteger[n][[;; , 2]]; noncubeFreeQ[n_] := Max[FactorInteger[n][[;; , 2]]] > 2; s /@ Select[Range[600], noncubeFreeQ]
  • PARI
    list(kmax) = {my(e); for(k = 2, kmax, e = factor(k)[, 2]; if(vecmax(e) > 2, print1(vecprod(e), ", "))); }

Formula

a(n) = A005361(A046099(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (zeta(2)*zeta(3)^2/zeta(6) - zeta(3) * Product_{p prime} (1 + 1/p^2 - 2/p^3))/(zeta(3) - 1) = (A082695 - A330594) * A002117 / (A002117 - 1) = 4.97723390794900554553... .

A382662 The unitary totient function applied to the cubefree numbers (A004709).

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 6, 8, 4, 10, 6, 12, 6, 8, 16, 8, 18, 12, 12, 10, 22, 24, 12, 18, 28, 8, 30, 20, 16, 24, 24, 36, 18, 24, 40, 12, 42, 30, 32, 22, 46, 48, 24, 32, 36, 52, 40, 36, 28, 58, 24, 60, 30, 48, 48, 20, 66, 48, 44, 24, 70, 72, 36, 48, 54, 60, 24, 78, 40
Offset: 1

Views

Author

Amiram Eldar, Apr 02 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e-1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; cubeFreeQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # < 3 &]; uphi /@ Select[Range[100], cubeFreeQ]
  • PARI
    uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2]-1); }
    iscubefree(n) = {my(f = factor(n)); for(i=1, #f~, if(f[i, 2] > 2, return (0))); 1; }
    list(lim) = apply(uphi, select(iscubefree, vector(lim, i, i)));

Formula

a(n) = A047994(A004709(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)^2/2) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.41625329674394407438... .

A382663 The unitary Jordan totient function applied to the cubefree numbers (A004709).

Original entry on oeis.org

1, 3, 8, 15, 24, 24, 48, 80, 72, 120, 120, 168, 144, 192, 288, 240, 360, 360, 384, 360, 528, 624, 504, 720, 840, 576, 960, 960, 864, 1152, 1200, 1368, 1080, 1344, 1680, 1152, 1848, 1800, 1920, 1584, 2208, 2400, 1872, 2304, 2520, 2808, 2880, 2880, 2520, 3480, 2880
Offset: 1

Views

Author

Amiram Eldar, Apr 02 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2*e)-1; uj2[1] = 1; uj2[n_] := Times @@ f @@@ FactorInteger[n]; cubeFreeQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # < 3 &]; uj2 /@ Select[Range[100], cubeFreeQ]
  • PARI
    uj2(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^(2*f[i, 2])-1); }
    iscubefree(n) = {my(f = factor(n)); for(i=1, #f~, if(f[i, 2] > 2, return (0))); 1; }
    list(lim) = apply(uj2, select(iscubefree, vector(lim, i, i)));

Formula

a(n) = A191414(A004709(n)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)^3/3) * Product_{p prime} (1 - 2/p^3 + 1/p^4 - 1/p^6 + 1/p^7) = 0.42656661743049439763... .
Showing 1-4 of 4 results.