A382427 Number of integer partitions of n that can be partitioned into constant blocks with distinct sums.
1, 1, 2, 3, 4, 7, 11, 14, 19, 28, 39, 50, 70, 91, 120, 161, 203, 260, 338, 426, 556, 695, 863, 1082, 1360, 1685
Offset: 0
Examples
The partition (3,2,2,2,1) can be partitioned as {{1},{2},{3},{2,2}} or {{1},{3},{2,2,2}}, so is counted under a(10). The a(1) = 1 through a(7) = 14 partitions: (1) (2) (3) (4) (5) (6) (7) (11) (21) (22) (32) (33) (43) (111) (31) (41) (42) (52) (1111) (221) (51) (61) (311) (222) (322) (2111) (321) (331) (11111) (411) (421) (2211) (511) (3111) (2221) (21111) (4111) (111111) (22111) (31111) (211111) (1111111)
Crossrefs
Programs
-
Mathematica
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]]; Table[Length[Select[IntegerPartitions[n],Select[pfacs[Times@@Prime/@#],UnsameQ@@hwt/@#&]!={}&]],{n,0,10}]
Comments