A382428 Number of normal multiset partitions of weight n into sets with distinct sizes.
1, 1, 1, 6, 8, 35, 292, 673, 2818, 16956, 219772, 636748, 3768505, 20309534, 183403268, 3227600747, 12272598308, 81353466578, 561187259734, 4416808925866, 50303004612136, 1238783066956740, 5566249468690291, 44970939483601100, 330144217684933896, 3131452652308459402
Offset: 0
Keywords
Examples
The a(1) = 1 through a(4) = 8 multiset partitions: {{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1},{1,2}} {{1},{1,2,3}} {{1},{2,3}} {{1},{2,3,4}} {{2},{1,2}} {{2},{1,2,3}} {{2},{1,3}} {{2},{1,3,4}} {{3},{1,2}} {{3},{1,2,3}} {{3},{1,2,4}} {{4},{1,2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Mathematica
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]]; Table[Length[Join@@(Select[mps[#],UnsameQ@@Length/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]
-
PARI
R(n, k)={Vec(prod(j=1, n, 1 + binomial(k, j)*x^j + O(x*x^n)))} seq(n)={sum(k=0, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))} \\ Andrew Howroyd, Mar 31 2025
Extensions
a(10) onwards from Andrew Howroyd, Mar 31 2025
Comments