A382459 Number of normal multisets of size n that can be partitioned into a set of sets with distinct sums in exactly one way.
1, 1, 0, 2, 1, 3, 2, 7, 4, 10, 19
Offset: 0
Examples
The normal multiset {1,2,2,2,2,3,3,4} has only one multiset partition into a set of sets with distinct sums: {{2},{1,2},{2,3},{2,3,4}}, so is counted under a(8). The a(1) = 1 through a(7) = 7 multisets: {1} . {112} {1122} {11123} {111233} {1111234} {122} {12223} {122233} {1112223} {12333} {1112333} {1222234} {1222333} {1233334} {1234444}
Crossrefs
Without distinct sums we have A382458.
Programs
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]]; Table[Length[Select[allnorm[n],Length[Select[mps[#],UnsameQ@@Total/@#&&And@@UnsameQ@@@#&]]==1&]],{n,0,5}]
Comments