cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A382463 First differences of A382462.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 12, -10, 2, 10, 1, 1, 1, 1, 1, 1, 12, -27, 29, -12, -16, 30, 1, 1, 1, 1, 12, -45, 47, -30, 2, 16, -34, 48, -12, -17, 31, 1, 1, 12, -63, 65, -46, 34, -52, 66, -30, 2, 16, -35, 49, -12, -17, 31, 12, -62, 63, -43, 44
Offset: 1

Views

Author

Paolo Xausa, Mar 28 2025

Keywords

Crossrefs

Cf. A382462.

Programs

A382466 Split A382462 into runs of increasing elements. a(n) is the length of the n-th run.

Original entry on oeis.org

19, 10, 2, 1, 7, 2, 3, 2, 1, 5, 2, 2, 2, 3, 2, 1, 3, 2, 2, 61, 11, 9, 8, 8, 7, 7, 6, 6, 3, 2, 4, 8, 2, 8, 2, 7, 2, 6, 2, 6, 2, 1, 8, 2, 5, 2, 2, 2, 1, 2, 1, 6, 2, 2, 1, 1, 2, 8, 6, 2, 6, 3, 2, 1, 5, 2, 2, 1, 4, 2, 1, 2, 6, 6, 3, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 5, 5, 4, 2, 2, 4
Offset: 1

Views

Author

Paolo Xausa, Mar 28 2025

Keywords

Crossrefs

Cf. A382462.

Programs

A382464 Positive integers that contain an even digit d immediately preceded by a digit >= d.

Original entry on oeis.org

10, 20, 22, 30, 32, 40, 42, 44, 50, 52, 54, 60, 62, 64, 66, 70, 72, 74, 76, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 120, 122, 130, 132, 140, 142, 144, 150, 152, 154, 160, 162, 164, 166, 170, 172, 174, 176, 180
Offset: 1

Views

Author

Paolo Xausa, Mar 28 2025

Keywords

Comments

Conjecture: these are the numbers missing from A382462.

Crossrefs

Programs

  • Mathematica
    A382464Q[k_] := MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?EvenQ} /; i >= j];
    Select[Range[200], A382464Q]
  • Python
    def ok(n):
        s = str(n)
        return any(d in "02468" and s[i-1]>=d for i, d in enumerate(s) if i > 0)
    print([k for k in range(181) if ok(k)]) # Michael S. Branicky, Apr 30 2025

A382465 Positive integers such that every even digit except the first is immediately preceded by a smaller digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 41, 43, 45, 46, 47, 48, 49, 51, 53, 55, 56, 57, 58, 59, 61, 63, 65, 67, 68, 69, 71, 73, 75, 77, 78, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99
Offset: 1

Views

Author

Paolo Xausa, Mar 28 2025

Keywords

Comments

Conjecture: these are the terms of A382462, sorted.

Crossrefs

Programs

  • Mathematica
    A382465Q[k_] := FreeQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?EvenQ} /; i >= j];
    Select[Range[100], A382465Q]
  • Python
    def ok(n):
        s = str(n)
        return n and all(d not in "02468" or s[i-1] 0)
    print([k for k in range(100) if ok(k)]) # Michael S. Branicky, Apr 30 2025

A382621 Lexicographically earliest sequence of distinct positive integers such that if a digit d in the digit stream (ignoring commas) is even, the previous digit is > d.

Original entry on oeis.org

1, 3, 2, 5, 4, 7, 6, 9, 8, 10, 11, 13, 15, 17, 19, 20, 30, 31, 32, 33, 21, 35, 23, 25, 27, 29, 37, 39, 40, 50, 51, 52, 53, 54, 55, 41, 57, 42, 59, 43, 70, 71, 72, 73, 74, 75, 45, 47, 49, 60, 76, 77, 61, 79, 62, 90, 91, 92, 93, 94, 95, 96, 97, 63, 98, 64, 99, 65, 101, 103
Offset: 1

Views

Author

Paolo Xausa, Apr 01 2025

Keywords

Comments

Could be summarized as "even digit, previous bigger". A variant of A342042.

Crossrefs

Programs

  • Mathematica
    A382621list[nmax_] := Module[{a, s, invQ, fu = 2},
      invQ[k_] := invQ[k] = (If[#, s[k] = #]; #) & [MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?EvenQ} /; i <= j]];
      s[_] := False; s[1] = True;
      NestList[(a = fu; While[s[a] || invQ[a] || invQ[# + First[IntegerDigits[a]]], a++] & [Max[Mod[#, 10], 1]*10]; While[s[fu], fu++]; s[a] = True; a) &, 1, nmax - 1]];
    A382621list[100]
  • Python
    from itertools import count, islice
    def cond(s):
        return all(s[i+1] < s[i] for i in range(len(s)-1) if s[i+1] in "02468")
    def agen(): # generator of terms
        an, seen, s, m = 1, {1}, "1", 2
        while True:
            yield an
            an = next(k for k in count(m) if k not in seen and cond(s[-1]+str(k)))
            seen.add(an); s += str(an)
            while m in seen or not cond(str(m)): m += 1
    print(list(islice(agen(), 70))) # Michael S. Branicky, Apr 03 2025

A382935 Lexicographically earliest sequence of distinct nonnegative integers such that if a digit d in the digit stream (ignoring commas) is odd, the previous digit is > d.

Original entry on oeis.org

0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 20, 21, 22, 12, 14, 16, 18, 24, 26, 28, 30, 40, 41, 42, 43, 44, 31, 46, 32, 48, 34, 36, 38, 50, 60, 61, 62, 63, 64, 65, 66, 51, 68, 52, 80, 81, 82, 83, 84, 85, 86, 53, 87, 54, 88, 56, 58, 70, 200, 202, 100, 204, 102, 104, 106, 108, 71, 206, 120, 208
Offset: 1

Views

Author

Paolo Xausa, Apr 14 2025

Keywords

Comments

Could be summarized as "odd digit, previous bigger". A variant of A342042.
No term contains the digit 9.

Crossrefs

Programs

  • Mathematica
    A382935list[nmax_] := Module[{a, s, invQ, fu = 1},
      invQ[k_] := invQ[k] = (If[#, s[k] = #]; #) & [MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i <= j]];
      s[_] := False; s[0] = True;
      NestList[(a = fu; While[s[a] || invQ[a] || invQ[# + First[IntegerDigits[a]]], a++] & [Max[Mod[#, 10], 1]*10]; While[s[fu], fu++]; s[a] = True; a) &, 0, nmax - 1]];
    A382935list[100]
  • Python
    from itertools import count, islice
    def cond(s):
        return all(s[i+1] < s[i] for i in range(len(s)-1) if s[i+1] in "13579")
    def agen(): # generator of terms
        an, seen, s, m = 0, {0}, "0", 1
        while True:
            yield an
            an = next(k for k in count(m) if k not in seen and cond(s[-1]+str(k)))
            seen.add(an); s += str(an)
            while m in seen or not cond(str(m)): m += 1
    print(list(islice(agen(), 70))) # Michael S. Branicky, Apr 14 2025

A383059 Lexicographically earliest sequence of distinct nonnegative integers such that if a digit d in the digit stream (ignoring commas) is odd, the previous digit is < d.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 10, 12, 22, 23, 24, 25, 26, 27, 28, 29, 40, 13, 42, 30, 14, 44, 45, 46, 47, 48, 49, 60, 15, 62, 32, 34, 50, 16, 64, 52, 35, 66, 67, 68, 69, 80, 17, 82, 36, 70, 18, 84, 54, 56, 72, 37, 86, 74, 57, 88, 89, 200, 19, 201, 38, 90, 39, 202, 58
Offset: 1

Views

Author

Paolo Xausa, Apr 18 2025

Keywords

Comments

Could be summarized as "odd digit, previous smaller". A variant of A342042.

Crossrefs

Programs

  • Mathematica
    A383059list[nmax_] := Module[{a, s, invQ, fu = 1},
      invQ[k_] := invQ[k] = (If[#, s[k] = #]; #) & [MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i >= j]];
      s[_] := False; s[0] = True;
      NestList[(a = fu; While[s[a] || invQ[a] || invQ[# + First[IntegerDigits[a]]], a++] & [Mod[#, 10]*10]; While[s[fu], fu++]; s[a] = True; a) &, 0, nmax - 1]];
    A383059list[100]
  • Python
    from itertools import count, islice
    def cond(s):
        return all(s[i] > s[i-1] for i in range(1, len(s)) if s[i] in "13579")
    def agen(): # generator of terms
        an, seen, s, m = 0, {0}, "0", 1
        while True:
            yield an
            an = next(k for k in count(m) if k not in seen and cond(s[-1]+str(k)))
            seen.add(an); s += str(an)
            while m in seen or not cond(str(m)): m += 1
    print(list(islice(agen(), 70))) # Michael S. Branicky, Apr 19 2025
Showing 1-7 of 7 results.