cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A382622 First differences of A382621.

Original entry on oeis.org

2, -1, 3, -1, 3, -1, 3, -1, 2, 1, 2, 2, 2, 2, 1, 10, 1, 1, 1, -12, 14, -12, 2, 2, 2, 8, 2, 1, 10, 1, 1, 1, 1, 1, -14, 16, -15, 17, -16, 27, 1, 1, 1, 1, 1, -30, 2, 2, 11, 16, 1, -16, 18, -17, 28, 1, 1, 1, 1, 1, 1, 1, -34, 35, -34, 35, -34, 36, 2, 2, 2, -40, 2, 11, 29
Offset: 1

Views

Author

Paolo Xausa, Apr 01 2025

Keywords

Crossrefs

Cf. A382621.

Programs

Formula

a(n) = A382621(n+1) - A382621(n).

A382625 Split A382621 into runs of increasing elements. a(n) is the length of the n-th run.

Original entry on oeis.org

2, 2, 2, 2, 12, 2, 13, 2, 2, 7, 6, 2, 9, 2, 2, 5, 4, 7, 8, 9, 10, 11, 4, 4, 3, 2, 4, 3, 4, 2, 6, 2, 4, 7, 2, 2, 11, 2, 2, 39, 2, 5, 5, 2, 5, 5, 2, 5, 6, 2, 2, 9, 2, 2, 7, 2, 5, 7, 2, 2, 2, 11, 2, 2, 2, 2, 10, 2, 6, 4, 6, 2, 7, 4, 7, 2, 8, 4, 8, 2, 9, 2, 11, 2, 2, 5, 2
Offset: 1

Views

Author

Paolo Xausa, Apr 01 2025

Keywords

Crossrefs

Cf. A382621.

Programs

A382623 Positive integers that contain an even digit d immediately preceded by a digit <= d.

Original entry on oeis.org

12, 14, 16, 18, 22, 24, 26, 28, 34, 36, 38, 44, 46, 48, 56, 58, 66, 68, 78, 88, 100, 102, 104, 106, 108, 112, 114, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 134, 136, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 156, 158, 160, 161, 162, 163
Offset: 1

Views

Author

Paolo Xausa, Apr 01 2025

Keywords

Comments

Conjecture: these are the numbers missing from A382621.

Crossrefs

Cf. A347298, A382464, A382621, A382624 (complement).

Programs

  • Mathematica
    A382623Q[k_] := MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?EvenQ} /; i <= j];
    Select[Range[200], A382623Q]
  • Python
    def ok(n):
        s = str(n)
        return any(s[i+1] >= s[i] for i in range(len(s)-1) if s[i+1] in "02468")
    print([k for k in range(1, 164) if ok(k)]) # Michael S. Branicky, Apr 03 2025

A382624 Positive integers such that every even digit except the leftmost is immediately preceded by a larger digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 20, 21, 23, 25, 27, 29, 30, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 45, 47, 49, 50, 51, 52, 53, 54, 55, 57, 59, 60, 61, 62, 63, 64, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90
Offset: 1

Views

Author

Paolo Xausa, Apr 01 2025

Keywords

Comments

Conjecture: these are the terms of A382621, sorted.

Crossrefs

Cf. A377912, A382465, A382621, A382623 (complement).

Programs

  • Mathematica
    A382624Q[k_] := FreeQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?EvenQ} /; i <= j];
    Select[Range[100], A382624Q]
  • Python
    def ok(n):
        s = str(n)
        return all(s[i+1] < s[i] for i in range(len(s)-1) if s[i+1] in "02468")
    print([k for k in range(1, 91) if ok(k)]) # Michael S. Branicky, Apr 03 2025

A382462 Lexicographically earliest sequence of distinct positive integers such that if a digit d in the digit stream (ignoring commas) is even, the previous digit is < d.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 31, 21, 23, 33, 34, 35, 36, 37, 38, 39, 51, 24, 53, 41, 25, 55, 56, 57, 58, 59, 71, 26, 73, 43, 45, 61, 27, 75, 63, 46, 77, 78, 79, 91, 28, 93, 47, 81, 29, 95, 65, 67, 83, 48, 97, 85, 68, 99, 111, 49, 112, 69
Offset: 1

Views

Author

Paolo Xausa, Mar 27 2025

Keywords

Comments

Could be summarized as "even digit, previous smaller". A variant of A342042.
No term contains the digit 0. - Paolo Xausa, Apr 30 2025

Crossrefs

Programs

  • Mathematica
    A382462list[nmax_] := Module[{a, s, invQ, fu = 2},
      invQ[k_] := invQ[k] = (If[#, s[k] = #]; #) & [MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?EvenQ} /; i >= j]];
      s[_] := False; s[1] = True;
      NestList[(a = fu; While[s[a] || invQ[a] || invQ[# + First[IntegerDigits[a]]], a++] & [Mod[#, 10]*10]; While[s[fu], fu++]; s[a] = True; a) &, 1, nmax-1]];
    A382462list[100]
  • Python
    from itertools import count, islice
    def cond(s):
        return all(s[i] > s[i-1] for i in range(1, len(s)) if s[i] in "02468")
    def agen(): # generator of terms
        an, seen, s, m = 1, {1}, "1", 1
        while True:
            yield an
            an = next(k for k in count(m) if k not in seen and cond(s[-1]+str(k)))
            seen.add(an); s += str(an)
            while m in seen or not cond(str(m)): m += 1
    print(list(islice(agen(), 70))) # Michael S. Branicky, Apr 19 2025

A382935 Lexicographically earliest sequence of distinct nonnegative integers such that if a digit d in the digit stream (ignoring commas) is odd, the previous digit is > d.

Original entry on oeis.org

0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 20, 21, 22, 12, 14, 16, 18, 24, 26, 28, 30, 40, 41, 42, 43, 44, 31, 46, 32, 48, 34, 36, 38, 50, 60, 61, 62, 63, 64, 65, 66, 51, 68, 52, 80, 81, 82, 83, 84, 85, 86, 53, 87, 54, 88, 56, 58, 70, 200, 202, 100, 204, 102, 104, 106, 108, 71, 206, 120, 208
Offset: 1

Views

Author

Paolo Xausa, Apr 14 2025

Keywords

Comments

Could be summarized as "odd digit, previous bigger". A variant of A342042.
No term contains the digit 9.

Crossrefs

Programs

  • Mathematica
    A382935list[nmax_] := Module[{a, s, invQ, fu = 1},
      invQ[k_] := invQ[k] = (If[#, s[k] = #]; #) & [MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i <= j]];
      s[_] := False; s[0] = True;
      NestList[(a = fu; While[s[a] || invQ[a] || invQ[# + First[IntegerDigits[a]]], a++] & [Max[Mod[#, 10], 1]*10]; While[s[fu], fu++]; s[a] = True; a) &, 0, nmax - 1]];
    A382935list[100]
  • Python
    from itertools import count, islice
    def cond(s):
        return all(s[i+1] < s[i] for i in range(len(s)-1) if s[i+1] in "13579")
    def agen(): # generator of terms
        an, seen, s, m = 0, {0}, "0", 1
        while True:
            yield an
            an = next(k for k in count(m) if k not in seen and cond(s[-1]+str(k)))
            seen.add(an); s += str(an)
            while m in seen or not cond(str(m)): m += 1
    print(list(islice(agen(), 70))) # Michael S. Branicky, Apr 14 2025

A383059 Lexicographically earliest sequence of distinct nonnegative integers such that if a digit d in the digit stream (ignoring commas) is odd, the previous digit is < d.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 10, 12, 22, 23, 24, 25, 26, 27, 28, 29, 40, 13, 42, 30, 14, 44, 45, 46, 47, 48, 49, 60, 15, 62, 32, 34, 50, 16, 64, 52, 35, 66, 67, 68, 69, 80, 17, 82, 36, 70, 18, 84, 54, 56, 72, 37, 86, 74, 57, 88, 89, 200, 19, 201, 38, 90, 39, 202, 58
Offset: 1

Views

Author

Paolo Xausa, Apr 18 2025

Keywords

Comments

Could be summarized as "odd digit, previous smaller". A variant of A342042.

Crossrefs

Programs

  • Mathematica
    A383059list[nmax_] := Module[{a, s, invQ, fu = 1},
      invQ[k_] := invQ[k] = (If[#, s[k] = #]; #) & [MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i >= j]];
      s[_] := False; s[0] = True;
      NestList[(a = fu; While[s[a] || invQ[a] || invQ[# + First[IntegerDigits[a]]], a++] & [Mod[#, 10]*10]; While[s[fu], fu++]; s[a] = True; a) &, 0, nmax - 1]];
    A383059list[100]
  • Python
    from itertools import count, islice
    def cond(s):
        return all(s[i] > s[i-1] for i in range(1, len(s)) if s[i] in "13579")
    def agen(): # generator of terms
        an, seen, s, m = 0, {0}, "0", 1
        while True:
            yield an
            an = next(k for k in count(m) if k not in seen and cond(s[-1]+str(k)))
            seen.add(an); s += str(an)
            while m in seen or not cond(str(m)): m += 1
    print(list(islice(agen(), 70))) # Michael S. Branicky, Apr 19 2025
Showing 1-7 of 7 results.