cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382483 a(n) = smallest number k such that at least one of sigma(n) - k and sigma(n) + k is a perfect number.

Original entry on oeis.org

5, 3, 2, 1, 0, 6, 2, 9, 7, 10, 6, 0, 8, 4, 4, 3, 10, 11, 8, 14, 4, 8, 4, 32, 3, 14, 12, 28, 2, 44, 4, 35, 20, 26, 20, 63, 10, 32, 28, 62, 14, 68, 16, 56, 50, 44, 20, 96, 29, 65, 44, 70, 26, 92, 44, 92, 52, 62, 32, 140, 34, 68, 76, 99, 56, 116, 40, 98, 68, 116, 44, 167, 46, 86, 96, 112, 68, 140
Offset: 1

Views

Author

Leo Hennig, Mar 27 2025

Keywords

Examples

			sigma(6) = 12, the nearest perfect number is 6, thus a(6) = 12 - 6 = 6.
sigma(26) = 42, the nearest perfect number is 28, thus a(26) = 42 - 28 = 14.
		

Crossrefs

Programs

  • Maple
    isA000396 := proc(n::integer)
        if n < 6 then
            false ;
        elif numtheory[sigma](n) = 2*n then
            true;
        else
            false;
        end if;
    end proc:
    A382483 := proc(n)
        local k ;
        for k from 0 do
            if isA000396(numtheory[sigma](n)-k) or isA000396(numtheory[sigma](n)+k)  then
                return k;
            end if;
        end do:
    end proc:
    seq(A382483(n),n=1..50) ; # R. J. Mathar, Apr 01 2025
  • PARI
    isp(x) = if (x>0, sigma(x) == 2*x);
    a(n) = my(k=0, s=sigma(n)); while (!(isp(s-k) || isp(s+k)), k++); k; \\ Michel Marcus, Apr 01 2025

Formula

a(A081357(k)) = 0.
a(A146542(k)) = 0.
a(A000396(k)) = A000396(k).