A382484 Least composite squarefree numbers k > n such that p + n divides k - n, for each prime p dividing k.
385, 182, 195, 1054, 165, 26781, 1015, 4958, 2193, 79222, 5159, 113937, 5593, 160937, 6351, 196009, 3657, 6318638, 2755, 1227818, 12669, 41302, 2795, 152358, 12121, 366821, 21827, 17578, 36569, 12677695, 38335, 457907, 2553, 15334, 141155, 69722351, 1045, 14003, 4823, 2943805
Offset: 1
Keywords
Examples
a(20) = 1227818 = 2 * 19 * 79 * 409 and (1227818 - 20) /(2 + 20) = 55809; (1227818 - 20) /(19 + 20) = 31482; (1227818 - 20) /(79 + 20) = 12402; (1227818 - 20) /(409 + 20) = 2862.
Programs
-
Maple
with(numtheory): P:=proc(q) local d,k,ok,n,p; for n from 1 to 17 do for k from n+1 to q do if issqrfree(k) and not isprime(k) then p:=factorset(k); ok:=1; for d from 1 to nops(p) do if frac((k-n)/(p[d]+n))>0 then ok:=0; break; fi; od; if ok=1 then lprint(n,k); break; fi; fi; od; od; end: P(10^8);
-
PARI
isok(k,n) = if (!issquarefree(k) || isprime(k), return(0)); my(f=factor(k)[,1]); for (i=1, #f, if ((k-n) % (f[i]+n), return(0));); return(1); a(n) = my(k=n+1); while (!isok(k, n), k++); k; \\ Michel Marcus, Mar 30 2025
Extensions
More terms from Michel Marcus, Mar 30 2025