cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382491 a(n) is the numerator of the asymptotic density of the numbers whose number of 3-smooth divisors is n.

Original entry on oeis.org

1, 5, 13, 71, 97, 1355, 793, 19163, 53473, 292355, 60073, 13102907, 535537, 78584915, 790859641, 3523099499, 43112257, 99646519235, 387682633, 2764285630427, 7604811750289, 7337148996275, 31385253913, 2226944658077771, 3656440886376673, 2341258386360995, 80539587570991081
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2025

Keywords

Comments

The denominator that corresponds to a(n) is 3*6^(n-1) = A169604(n-1) = A081341(n).

Examples

			Fractions begin with 1/3, 5/18, 13/108, 71/648, 97/3888, 1355/23328, 793/139968, 19163/839808, 53473/5038848, 292355/30233088, 60073/181398528, 13102907/1088391168, ...
a(1) = 1 since a(1)/A081341(1) = 1/3 is the asymptotic density of the numbers with a single 3-smooth divisor, 1, i.e., the numbers that are congruent to 1 or 5 mod 6 (A007310).
a(2) = 5 since a(2)/A081341(2) = 5/18 is the asymptotic density of the numbers with exactly two 3-smooth divisors, either 1 and 2 or 1 and 3, i.e., A171126.
		

Crossrefs

Cf. A007310, A072078, A081341 (denominators), A169604, A171126.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 2^(n-#) * 3^(n-n/#) &]; Array[a, 30]
  • PARI
    a(n) = sumdiv(n, d, 2^(n-d)*3^(n-n/d));

Formula

a(n) = Sum_{d|n} 2^(n-d) * 3^(n-n/d).
a(p) = 2^(p-1) + 3^(p-1).
Let f(n) = a(n)/A081341(n). Then:
f(n) = (1/3) * Sum_{d|n} (1/2)^(d-1) * (1/3)^(n/d-1).
Sum_{n>=1} f(n) = 1.
Sum_{n>=1} n * f(n) = 3 (the asymptotic mean of A072078).
Sum_{n>=1} n^2 * f(n) = 18, and therefore, the asymptotic variance of A072078 is 18 - 3^2 = 9, and its asymptotic standard deviation is 3.