A382491 a(n) is the numerator of the asymptotic density of the numbers whose number of 3-smooth divisors is n.
1, 5, 13, 71, 97, 1355, 793, 19163, 53473, 292355, 60073, 13102907, 535537, 78584915, 790859641, 3523099499, 43112257, 99646519235, 387682633, 2764285630427, 7604811750289, 7337148996275, 31385253913, 2226944658077771, 3656440886376673, 2341258386360995, 80539587570991081
Offset: 1
Examples
Fractions begin with 1/3, 5/18, 13/108, 71/648, 97/3888, 1355/23328, 793/139968, 19163/839808, 53473/5038848, 292355/30233088, 60073/181398528, 13102907/1088391168, ... a(1) = 1 since a(1)/A081341(1) = 1/3 is the asymptotic density of the numbers with a single 3-smooth divisor, 1, i.e., the numbers that are congruent to 1 or 5 mod 6 (A007310). a(2) = 5 since a(2)/A081341(2) = 5/18 is the asymptotic density of the numbers with exactly two 3-smooth divisors, either 1 and 2 or 1 and 3, i.e., A171126.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a[n_] := DivisorSum[n, 2^(n-#) * 3^(n-n/#) &]; Array[a, 30]
-
PARI
a(n) = sumdiv(n, d, 2^(n-d)*3^(n-n/d));
Formula
a(n) = Sum_{d|n} 2^(n-d) * 3^(n-n/d).
a(p) = 2^(p-1) + 3^(p-1).
Let f(n) = a(n)/A081341(n). Then:
f(n) = (1/3) * Sum_{d|n} (1/2)^(d-1) * (1/3)^(n/d-1).
Sum_{n>=1} f(n) = 1.
Sum_{n>=1} n * f(n) = 3 (the asymptotic mean of A072078).
Sum_{n>=1} n^2 * f(n) = 18, and therefore, the asymptotic variance of A072078 is 18 - 3^2 = 9, and its asymptotic standard deviation is 3.
Comments