A382524 Number of ways to choose a different constant partition of each part of a constant partition of n.
1, 1, 2, 2, 5, 2, 6, 2, 10, 3, 6, 2, 24, 2, 6, 4, 17, 2, 36, 2, 18, 4, 6, 2, 86, 3, 6, 10, 18, 2, 44, 2, 50, 4, 6, 4, 159, 2, 6, 4, 62, 2, 44, 2, 18, 30, 6, 2, 486, 3, 12, 4, 18, 2, 140, 4, 62, 4, 6, 2, 932, 2, 6, 30, 157, 4, 44, 2, 18, 4, 20, 2, 1500, 2, 6
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 10 twice-partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (11111) (33) (1111111) (44) (1111) (222) (2222) (11)(2) (111111) (22)(4) (2)(11) (111)(3) (4)(22) (3)(111) (1111)(4) (4)(1111) (11111111) (1111)(22) (22)(1111)
Links
Crossrefs
Programs
-
Mathematica
Table[If[n==0,1,Sum[Binomial[Length[Divisors[n/d]],d]*d!,{d,Divisors[n]}]],{n,0,100}]
Formula
a(n) = Sum_{d|n} binomial(A000005(n/d),d) * d!
Comments