A382629 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (n-k)*T(n-1,k-1) + 2*(k+1)*T(n-1,k) + A102365(n,k) with T(n,k) = 0 if k < 0 or k > n.
1, 3, 0, 7, 4, 0, 15, 35, 5, 0, 31, 203, 115, 6, 0, 63, 994, 1428, 315, 7, 0, 127, 4470, 13421, 7450, 783, 8, 0, 255, 19185, 108156, 121314, 32865, 1839, 9, 0, 511, 80161, 793704, 1593902, 870191, 130665, 4171, 10, 0, 1023, 329648, 5483093, 18269658, 17591035, 5383906, 485166, 9251, 11, 0
Offset: 0
Examples
Triangle begins: 1; 3, 0; 7, 4, 0; 15, 35, 5, 0; 31, 203, 115, 6, 0; 63, 994, 1428, 315, 7, 0; 127, 4470, 13421, 7450, 783, 8, 0; 255, 19185, 108156, 121314, 32865, 1839, 9, 0; 511, 80161, 793704, 1593902, 870191, 130665, 4171, 10, 0; ...
Links
- Seiichi Manyama, Rows n = 0..139, flattened
Programs
-
PARI
a102365(n, k) = if(k==0, 1, if(n
n, 0, (n-k)*T(n-1, k-1)+2*(k+1)*T(n-1, k)+a102365(n, k));
Formula
(2/3)^n * Sum_{k=0..n} T(n,k)/2^k = A098830(n).