A382636 Decimal expansion of the multiple prime zeta value p[2, 1].
1, 5, 2, 6, 6, 1, 4, 1, 1, 2, 5, 4, 2
Offset: 0
Examples
0.1526614112542...
Programs
-
Mathematica
p2 = N[PrimeZetaP[2], 50]; p = 2; sum = 0; sum1 = 0; diff = 0; Monitor[Do[sum = sum + N[1/p^2, 50]; diff = p2 - sum; sum1 = sum1 + diff/p; p = NextPrime[p], {n, 1, 100000000}], {sum1, n}]
Formula
Equals p[2, 1] = Sum_{p,q prime p>q} 1/(p^2*q).
Equals p[2, 1] = (p[2, 3] + p[4, 1] + p[2, 1, 2] + 2 p[2, 2, 1])/A085548.
Equals p[2, 1] = sqrt(p[4, 2] + 2 p[2, 2, 2] + 2 p[2, 3, 1] + 2 p[4, 1, 1] + 2 p[2, 1, 2, 1] + 4 p[2, 2, 1, 1]).
A085548*p[2, 1] - p[2, 1, 2] = 0.0531558219243989116479829... [25 digits accuracy].
For partial sums and in infinity occurs identities:
(2) lim_{x->oo} p[1](x)^3 - 2*p[1](x)*A085548 - p[1, 2](x) - 6*p[1, 1, 1](x) = p[2, 1] - A085541 = const.
(3) lim_{x->oo} (p[1](x)^3 - 3*p[1, 2](x) - 6*p[1, 1, 1](x) = 3*p[2, 1] + A085541 = const.
(4) lim_{x->oo} (p[1](x)^3 - p[1](x)*A085548 - p[1](x)*p[1, 1](x) - p[1, 2](x) - 3*p[1, 1, 1](x)) = p[2, 1] = const.
(5) lim_{x->oo} (p[1](x)*p[1, 1](x) - p[1, 2](x) - 3*p[1, 1, 1](x)) = p[2, 1] = const.
on the left side of each eq. (1)-(5) are divergent series: p[1], p[1, 1], p[1, 2], p[1, 1, 1].
Comments