cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382668 a(n) = C(n+1) - C(n-1) - 2*C(n-2) where C(n) = A000108(n) are the Catalan numbers.

Original entry on oeis.org

2, 10, 33, 108, 359, 1214, 4169, 14508, 51064, 181492, 650522, 2348856, 8535921, 31197430, 114601065, 422891340, 1566903060, 5827192140, 21743726430, 81383916840, 305465105790, 1149489049644, 4335921660522, 16391329697528, 62091796219904, 235656705875304
Offset: 2

Views

Author

F. Chapoton, Apr 02 2025

Keywords

Crossrefs

Programs

  • Maple
    gf := ((2*x^3 + x^2 - 1)*sqrt(1 - 4*x) - 4*x^3 - 3*x^2 - 2*x + 1)/(2*x^2):
    ser := series(gf, x, 30): seq(coeff(ser, x, n), n = 2..27);  # Peter Luschny, Apr 03 2025
  • Mathematica
    a[n_]:=CatalanNumber[n+1]-CatalanNumber[n-1]-2CatalanNumber[n-2];Array[a,26,2] (* James C. McMahon, Apr 05 2025 *)
  • SageMath
    C = catalan_number
    [C(n + 1) - C(n - 1) - 2 * C(n - 2) for n in range(2, 28)]

Formula

a(n) = [x^n] ((2*x^3 + x^2 - 1)*sqrt(1 - 4*x) - 4*x^3 - 3*x^2 - 2*x + 1)/(2*x^2). - Peter Luschny, Apr 03 2025