A382668 a(n) = C(n+1) - C(n-1) - 2*C(n-2) where C(n) = A000108(n) are the Catalan numbers.
2, 10, 33, 108, 359, 1214, 4169, 14508, 51064, 181492, 650522, 2348856, 8535921, 31197430, 114601065, 422891340, 1566903060, 5827192140, 21743726430, 81383916840, 305465105790, 1149489049644, 4335921660522, 16391329697528, 62091796219904, 235656705875304
Offset: 2
Programs
-
Maple
gf := ((2*x^3 + x^2 - 1)*sqrt(1 - 4*x) - 4*x^3 - 3*x^2 - 2*x + 1)/(2*x^2): ser := series(gf, x, 30): seq(coeff(ser, x, n), n = 2..27); # Peter Luschny, Apr 03 2025
-
Mathematica
a[n_]:=CatalanNumber[n+1]-CatalanNumber[n-1]-2CatalanNumber[n-2];Array[a,26,2] (* James C. McMahon, Apr 05 2025 *)
-
SageMath
C = catalan_number [C(n + 1) - C(n - 1) - 2 * C(n - 2) for n in range(2, 28)]
Formula
a(n) = [x^n] ((2*x^3 + x^2 - 1)*sqrt(1 - 4*x) - 4*x^3 - 3*x^2 - 2*x + 1)/(2*x^2). - Peter Luschny, Apr 03 2025