A382674 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] exp(x+y) / (exp(x) + exp(y) - exp(x+y))^4.
1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 29, 77, 29, 1, 1, 61, 325, 325, 61, 1, 1, 125, 1181, 2357, 1181, 125, 1, 1, 253, 3973, 13621, 13621, 3973, 253, 1, 1, 509, 12797, 69269, 118061, 69269, 12797, 509, 1, 1, 1021, 40165, 326005, 862261, 862261, 326005, 40165, 1021, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 5, 13, 29, 61, 125, ... 1, 13, 77, 325, 1181, 3973, ... 1, 29, 325, 2357, 13621, 69269, ... 1, 61, 1181, 13621, 118061, 862261, ... 1, 125, 3973, 69269, 862261, 8712245, ... ...
Crossrefs
Programs
-
PARI
a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+3, 3)*stirling(n+1, j+1, 2)*stirling(k+1, j+1, 2));
Formula
E.g.f.: exp(x+y) / (exp(x) + exp(y) - exp(x+y))^4.
A(n,k) = A(k,n).
A(n,k) = Sum_{j=0..min(n,k)} (j!)^2 * binomial(j+3,3) * Stirling2(n+1,j+1) * Stirling2(k+1,j+1).