A381042 Alternating sum of floor(n^(1/k)), with k >= 2.
0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7
Offset: 0
Keywords
Examples
n: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... k=2 (+): 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, ... (A000196) k=3 (-): 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, ... (A048766) ... Sum: 0, 0, 0, 0, 1, 1, 1, 1, 0, 1 ... (= this sequence).
Links
- Friedjof Tellkamp, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
z = 100; Table[Sum[(-1)^k Floor[n^(1/k)], {k, 2, 2 Floor@Log[2, z/2] - 1}], {n, 0, z}]