A382726 Total number of entries in rows 0,1,...,n of Pascal's triangle not divisible by 7.
1, 3, 6, 10, 15, 21, 28, 30, 34, 40, 48, 58, 70, 84, 87, 93, 102, 114, 129, 147, 168, 172, 180, 192, 208, 228, 252, 280, 285, 295, 310, 330, 355, 385, 420, 426, 438, 456, 480, 510, 546, 588, 595, 609, 630, 658, 693, 735, 784, 786, 790, 796, 804, 814, 826, 840, 844, 852, 864, 880, 900, 924, 952, 958, 970, 988, 1012, 1042, 1078
Offset: 0
Keywords
Links
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Periodic minimum in the count of binomial coefficients not divisible by a prime, arXiv:2408.06817 [math.NT], 2024.
Programs
-
Mathematica
a[n_]:=(n^2+3n+2)/2-Count[Mod[Flatten[Table[Binomial[m, k], {m, 0,n}, {k, 0,m}]] ,7],0];Array[a,69,0] (* James C. McMahon, Aug 15 2025 *)
-
Python
from math import prod from gmpy2 import digits def A382726(n): return sum(prod(int(d)+1 for d in digits(m,7)) for m in range(n+1)) # Chai Wah Wu, Aug 10 2025
-
Python
from math import prod from gmpy2 import digits def A382726(n): d = list(map(lambda x:int(x)+1,digits(n+1,7)[::-1])) return sum((b-1)*prod(d[a:])*28**a for a, b in enumerate(d))>>1 # Chai Wah Wu, Aug 13 2025
Comments