A382727 Total number of entries in rows 0,1,...,n of Pascal's triangle not divisible by 11.
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 68, 72, 78, 86, 96, 108, 122, 138, 156, 176, 198, 201, 207, 216, 228, 243, 261, 282, 306, 333, 363, 396, 400, 408, 420, 436, 456, 480, 508, 540, 576, 616, 660, 665, 675, 690, 710, 735, 765, 800, 840, 885, 935, 990, 996, 1008, 1026, 1050, 1080, 1116, 1158, 1206, 1260, 1320, 1386, 1393, 1407
Offset: 0
Keywords
Links
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Periodic minimum in the count of binomial coefficients not divisible by a prime, arXiv:2408.06817 [math.NT], 2024.
Programs
-
Python
from math import prod from gmpy2 import digits def A382727(n): return sum(prod(int(d,11)+1 for d in digits(m,11)) for m in range(n+1)) # Chai Wah Wu, Aug 10 2025
-
Python
from math import prod from gmpy2 import digits def A382727(n): d = list(map(lambda x:int(x,11)+1,digits(n+1,11)[::-1])) return sum((b-1)*prod(d[a:])*66**a for a, b in enumerate(d))>>1 # Chai Wah Wu, Aug 13 2025