A382736 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / (exp(x) + exp(y) - exp(x+y))^4.
1, 0, 0, 0, 4, 0, 0, 4, 4, 0, 0, 4, 44, 4, 0, 0, 4, 124, 124, 4, 0, 0, 4, 284, 1084, 284, 4, 0, 0, 4, 604, 5164, 5164, 604, 4, 0, 0, 4, 1244, 19804, 48044, 19804, 1244, 4, 0, 0, 4, 2524, 68524, 313804, 313804, 68524, 2524, 4, 0, 0, 4, 5084, 224284, 1707884, 3281404, 1707884, 224284, 5084, 4, 0
Offset: 0
Examples
Square array begins: 1, 0, 0, 0, 0, 0, ... 0, 4, 4, 4, 4, 4, ... 0, 4, 44, 124, 284, 604, ... 0, 4, 124, 1084, 5164, 19804, ... 0, 4, 284, 5164, 48044, 313804, ... 0, 4, 604, 19804, 313804, 3281404, ...
Programs
-
PARI
a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+3, 3)*stirling(n, j, 2)*stirling(k, j, 2));
Formula
E.g.f.: 1 / (exp(x) + exp(y) - exp(x+y))^4.
A(n,k) = A(k,n).
A(n,k) = Sum_{j=0..min(n,k)} (j!)^2 * binomial(j+3,3) * Stirling2(n,j) * Stirling2(k,j).