A382741 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] (1/3) * (1 / (exp(x) + exp(y) - exp(x+y))^3 - 1).
1, 1, 1, 1, 9, 1, 1, 25, 25, 1, 1, 57, 193, 57, 1, 1, 121, 889, 889, 121, 1, 1, 249, 3361, 7593, 3361, 249, 1, 1, 505, 11545, 47641, 47641, 11545, 505, 1, 1, 1017, 37633, 253737, 465601, 253737, 37633, 1017, 1, 1, 2041, 118969, 1228249, 3657721, 3657721, 1228249, 118969, 2041, 1
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 9, 25, 57, 121, 249, ... 1, 25, 193, 889, 3361, 11545, ... 1, 57, 889, 7593, 47641, 253737, ... 1, 121, 3361, 47641, 465601, 3657721, ... 1, 249, 11545, 253737, 3657721, 40666089, ...
Programs
-
PARI
a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*stirling(n, j, 2)*stirling(k, j, 2))/3;
Formula
E.g.f.: (1/3) * (1 / (exp(x) + exp(y) - exp(x+y))^3 - 1).
A(n,k) = A(k,n).
A(n,k) = (1/3) * A382735(n,k).