cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382787 The product of exponents in the prime factorization of the numbers whose prime factorization contains exponents that are either 1 or even.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Apr 05 2025

Keywords

Comments

First differs from A368473 at n = 57.

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, # == 1 || EvenQ[#] &], Times @@ e, Nothing]]; Array[f, 150]
  • PARI
    list(lim) = {my(e, ok); for(k = 1, lim, e = factor(k)[, 2]; ok = 1; for(i = 1, #e, if(e[i] > 1 && e[i]%2, ok = 0; break)); if(ok, print1(vecprod(e), ", ")));}

Formula

a(n) = A005361(A335275(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (zeta(2)^2 / A065465) * Product_{p prime} (1 - 1/p^2 - 2/p^3 + 3/p^4 - 1/p^6) = 1.568148713987289233406... .