A382799 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / (1 - log(1-x) * log(1-y))^2.
1, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 4, 14, 4, 0, 0, 12, 40, 40, 12, 0, 0, 48, 144, 260, 144, 48, 0, 0, 240, 648, 1284, 1284, 648, 240, 0, 0, 1440, 3528, 6936, 9588, 6936, 3528, 1440, 0, 0, 10080, 22608, 42744, 65928, 65928, 42744, 22608, 10080, 0, 0, 80640, 166896, 300240, 476808, 581952, 476808, 300240, 166896, 80640, 0
Offset: 0
Examples
Square array begins: 1, 0, 0, 0, 0, 0, ... 0, 2, 2, 4, 12, 48, ... 0, 2, 14, 40, 144, 648, ... 0, 4, 40, 260, 1284, 6936, ... 0, 12, 144, 1284, 9588, 65928, ... 0, 48, 648, 6936, 65928, 581952, ...
Programs
-
PARI
a(n, k) = sum(j=0, min(n, k), j!*(j+1)!*abs(stirling(n, j, 1)*stirling(k, j, 1)));
Formula
E.g.f.: 1 / (1 - log(1-x) * log(1-y))^2.
A(n,k) = A(k,n).
A(n,k) = Sum_{j=0..min(n,k)} j! * (j+1)! * |Stirling1(n,j)| * |Stirling1(k,j)|.