A382801 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] (1/2) * (1 / (1 - log(1-x) * log(1-y))^2 - 1).
1, 1, 1, 2, 7, 2, 6, 20, 20, 6, 24, 72, 130, 72, 24, 120, 324, 642, 642, 324, 120, 720, 1764, 3468, 4794, 3468, 1764, 720, 5040, 11304, 21372, 32964, 32964, 21372, 11304, 5040, 40320, 83448, 150120, 238404, 290976, 238404, 150120, 83448, 40320
Offset: 1
Examples
Square array begins: 1, 1, 2, 6, 24, 120, ... 1, 7, 20, 72, 324, 1764, ... 2, 20, 130, 642, 3468, 21372, ... 6, 72, 642, 4794, 32964, 238404, ... 24, 324, 3468, 32964, 290976, 2524080, ... 120, 1764, 21372, 238404, 2524080, 26048256, ...
Programs
-
PARI
a(n, k) = sum(j=0, min(n, k), j!*(j+1)!*abs(stirling(n, j, 1)*stirling(k, j, 1)))/2;
Formula
E.g.f.: (1/2) * (1 / (1 - log(1-x) * log(1-y))^2 - 1).
A(n,k) = A(k,n).
A(n,k) = (1/2) * A382799(n,k).