A382802 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] (1/3) * (1 / (1 - log(1-x) * log(1-y))^3 - 1).
1, 1, 1, 2, 9, 2, 6, 26, 26, 6, 24, 94, 196, 94, 24, 120, 424, 996, 996, 424, 120, 720, 2312, 5448, 8204, 5448, 2312, 720, 5040, 14832, 33816, 58544, 58544, 33816, 14832, 5040, 40320, 109584, 238656, 431632, 556376, 431632, 238656, 109584, 40320
Offset: 1
Examples
Square array begins: 1, 1, 2, 6, 24, 120, ... 1, 9, 26, 94, 424, 2312, ... 2, 26, 196, 996, 5448, 33816, ... 6, 94, 996, 8204, 58544, 431632, ... 24, 424, 5448, 58544, 556376, 5017480, ... 120, 2312, 33816, 431632, 5017480, 55016408, ...
Programs
-
PARI
a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*abs(stirling(n, j, 1)*stirling(k, j, 1)))/3;
Formula
E.g.f.: (1/3) * (1 / (1 - log(1-x) * log(1-y))^3 - 1).
A(n,k) = A(k,n).
A(n,k) = (1/3) * A382800(n,k).