cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382809 a(n) = (6*n + 1)*(12*n + 1)*(18*n + 1).

Original entry on oeis.org

1, 1729, 12025, 38665, 89425, 172081, 294409, 464185, 689185, 977185, 1335961, 1773289, 2296945, 2914705, 3634345, 4463641, 5410369, 6482305, 7687225, 9032905, 10527121, 12177649, 13992265, 15978745, 18144865, 20498401, 23047129, 25798825, 28761265, 31942225, 35349481
Offset: 0

Views

Author

Stefano Spezia, Apr 05 2025

Keywords

Comments

a(n) is a Carmichael number if all the three factors (6*n + 1), (12*n + 1), and (18*n + 1) are prime (see Chernick and Ribenboim).

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 101.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 146.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,1729,12025,38665},31]

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.
G.f.: (1 + 1725*x + 5115*x^2 + 935*x^3)/(1 - x)^4.
E.g.f.: exp(x)*(1 + 1728*x + 4284*x^2 + 1296*x^3).
a(n) = A016921(n) * A017533(n) * A161705(n).
a(n) == 1 (mod 72).