cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382878 Set of positions of first appearances in A382857 (permutations of prime indices with equal run-lengths).

Original entry on oeis.org

1, 6, 24, 30, 36, 180, 210, 360, 420, 720, 1080, 1260, 1800, 2160, 2310, 2520, 3600, 4620, 5040, 5400, 6300, 7560, 10800, 12600, 13860, 15120, 21600, 25200, 25920, 27000, 27720, 30030, 32400, 37800, 44100, 45360, 46656, 50400, 54000, 55440, 60060, 60480, 64800
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The permutations for n = 6, 720, 36, 25920, 30:
  (1,2)  (1,2,1,2,1,3,1)  (1,1,2,2)  (1,2,1,2,1,2,1,2,1,3,1)  (1,2,3)
  (2,1)  (1,2,1,3,1,2,1)  (1,2,1,2)  (1,2,1,2,1,2,1,3,1,2,1)  (1,3,2)
         (1,3,1,2,1,2,1)  (2,1,2,1)  (1,2,1,2,1,3,1,2,1,2,1)  (2,1,3)
                          (2,2,1,1)  (1,2,1,3,1,2,1,2,1,2,1)  (2,3,1)
                                     (1,3,1,2,1,2,1,2,1,2,1)  (3,1,2)
                                                              (3,2,1)
The terms together with their prime indices begin:
      1: {}
      6: {1,2}
     24: {1,1,1,2}
     30: {1,2,3}
     36: {1,1,2,2}
    180: {1,1,2,2,3}
    210: {1,2,3,4}
    360: {1,1,1,2,2,3}
    420: {1,1,2,3,4}
    720: {1,1,1,1,2,2,3}
   1080: {1,1,1,2,2,2,3}
   1260: {1,1,2,2,3,4}
   1800: {1,1,1,2,2,3,3}
   2160: {1,1,1,1,2,2,2,3}
   2310: {1,2,3,4,5}
   2520: {1,1,1,2,2,3,4}
   3600: {1,1,1,1,2,2,3,3}
		

Crossrefs

Positions of first appearances in A382857 (zeros A382879), by signature A382858.
For distinct run-lengths we have A382772, firsts of A382771 (by signature A382773).
A140690 lists numbers whose binary expansion has equal run-lengths, distinct A044813.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    y=Table[Length[Select[Permutations[Join@@ConstantArray@@@FactorInteger[n]],SameQ@@Length/@Split[#]&]],{n,0,1000}];
    fip[y_]:=Select[Range[Length[y]],!MemberQ[Take[y,#-1],y[[#]]]&];
    fip[Rest[y]]