cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A382646 Numbers k such that (k*2^d - 1)*(d*2^k - 1) is semiprime for some divisor d of k.

Original entry on oeis.org

2, 3, 6, 7, 12, 18, 19, 21, 30, 31, 42, 60, 75, 81, 115, 123, 126, 132, 133, 225, 249, 306, 324, 362, 384, 462, 468, 512, 606, 607, 612, 751, 822, 1279, 2170, 2202, 2281, 5312, 7755, 9531, 12379, 14898, 15822, 18123, 18819, 18885, 22971, 23005, 23208, 41628, 44497, 51384, 52540, 98726
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 01 2025

Keywords

Comments

No further terms <= 10^5. - Michael S. Branicky, Apr 07 2025

Examples

			7 is in this sequence because (7*2^1-1)*(1*2^7-1) = 13*127 is semiprime for divisor 1 of 7.
		

Crossrefs

Supersequence of A002234.

Programs

  • Magma
    [n: n in [1..1000] | not #[d: d in Divisors(n) | IsPrime(d*2^n-1) and IsPrime(n*2^d-1)] eq 0];
    
  • PARI
    isok(k) = fordiv(k, d, if (ispseudoprime(k*2^d - 1) && ispseudoprime(d*2^k - 1), return(1))); \\ Michel Marcus, Apr 02 2025
    
  • Python
    from itertools import count, islice
    from sympy import isprime, divisors
    def A382646_gen(): # generator of terms
        yield from filter(lambda k:any(isprime((k<A382646_list = list(islice(A382646_gen(), 30)) # Chai Wah Wu, Apr 15 2025

Extensions

a(40) from Michel Marcus, Apr 02 2025
a(41)-a(54) from Michael S. Branicky, Apr 07 2025
Showing 1-1 of 1 results.