A382898 Beginning with 13, least prime such that concatenation of first n terms and its digit reversal both are primes.
13, 151, 227, 2083, 887, 79, 2963, 1579, 6287, 1321, 6719, 54919, 26699, 8647, 4229, 3919, 102161, 42433, 1667, 192193, 11633, 186343, 47339, 3259, 65963, 14293, 29717, 61297, 28493, 231367, 43793, 145021, 566441, 475903, 92381, 80473, 139967, 882061, 72893, 709279, 6053, 114487, 1179389, 204331, 203351, 139831, 396239, 205327, 501173, 951589
Offset: 1
Links
- J.W.L. (Jan) Eerland, Table of n, a(n) for n = 1..150
Crossrefs
Programs
-
Maple
rev:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: tcat:= proc(a,b) a*10^(1+ilog10(b))+b end proc: A:= 13: x:= 13: for i from 1 to 50 do p:= 2: do p:= nextprime(p); y:= tcat(x,p); if isprime(y) and isprime(rev(y)) then A:= A,p; x:= y; break fi; od od: A; # after Robert Israel in A113584
-
Mathematica
w={13};Do[k=1;q=Monitor[Parallelize[While[True,If[PrimeQ[FromDigits[Join@@IntegerDigits/@Reverse[IntegerDigits[FromDigits[Join@@IntegerDigits/@Append[w,Prime[k]]]]]]]&&PrimeQ[FromDigits[Join@@IntegerDigits/@Append[w,Prime[k]]]],Break[]];k++];Prime[k]],{i,k}];w=Append[w,q],{i,2,50}];w
-
Python
from itertools import count, islice from gmpy2 import digits, is_prime, mpz, next_prime def agen(): # generator of terms s, r, an = "", "", 13 while True: yield int(an) d = digits(an) s, r, p, sp = s+d, d[::-1]+r, 3, "3" while not is_prime(mpz(s+sp)) or not is_prime(mpz(sp[::-1]+r)): p = next_prime(p) sp = digits(p) an = p print(list(islice(agen(), 40))) # after Michael S. Branicky in A113584