A382912 Numbers k such that row k of A305936 (a multiset whose multiplicities are the prime indices of k) has no permutation with all distinct run-lengths.
4, 8, 9, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 120, 124, 125, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 153, 156, 160, 162, 164
Offset: 1
Keywords
Examples
The terms, prime indices, and corresponding multisets begin: 4: {1,1} {1,2} 8: {1,1,1} {1,2,3} 9: {2,2} {1,1,2,2} 12: {1,1,2} {1,1,2,3} 16: {1,1,1,1} {1,2,3,4} 18: {1,2,2} {1,1,2,2,3} 20: {1,1,3} {1,1,1,2,3} 24: {1,1,1,2} {1,1,2,3,4} 27: {2,2,2} {1,1,2,2,3,3} 28: {1,1,4} {1,1,1,1,2,3} 32: {1,1,1,1,1} {1,2,3,4,5} 36: {1,1,2,2} {1,1,2,2,3,4} 40: {1,1,1,3} {1,1,1,2,3,4} 44: {1,1,5} {1,1,1,1,1,2,3} 45: {2,2,3} {1,1,1,2,2,3,3} 48: {1,1,1,1,2} {1,1,2,3,4,5} 50: {1,3,3} {1,1,1,2,2,2,3} 52: {1,1,6} {1,1,1,1,1,1,2,3}
Crossrefs
Programs
-
Mathematica
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{}, Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_} :> Table[PrimePi[p],{k}]]]]]; lasQ[y_]:=Select[Permutations[y], UnsameQ@@Length/@Split[#]&]!={}; Select[Range[100],Not@*lasQ@*nrmptn]
Comments