A382915 Number of integer partitions of n having no permutation with all equal run-lengths.
0, 0, 0, 0, 0, 1, 2, 4, 4, 9, 11, 18, 21, 34, 41, 55, 69, 98, 120, 160, 189, 249, 309, 396, 472, 605, 734, 913, 1099, 1371, 1632, 2021, 2406, 2937, 3514, 4251, 5039, 6101, 7221, 8646, 10205, 12209, 14347, 17086, 20041, 23713, 27807, 32803, 38262, 45043, 52477, 61471, 71496
Offset: 0
Keywords
Examples
The partition y = (2,2,1,1,1) has permutations and run-lengths: (2,2,1,1,1) (2,3) (2,1,2,1,1) (1,1,1,2) (2,1,1,2,1) (1,2,1,1) (2,1,1,1,2) (1,3,1) (1,2,2,1,1) (1,2,2) (1,2,1,2,1) (1,1,1,1,1) (1,2,1,1,2) (1,1,2,1) (1,1,2,2,1) (2,2,1) (1,1,2,1,2) (2,1,1,1) (1,1,1,2,2) (3,2) Since (1,2,1,2,1) has all equal run-lengths (1,1,1,1,1), y is not counted under a(7). The a(5) = 1 through a(10) = 11 partitions: (2111) (3111) (2221) (5111) (3222) (3331) (21111) (4111) (41111) (6111) (4222) (31111) (311111) (22221) (7111) (211111) (2111111) (51111) (61111) (321111) (421111) (411111) (511111) (2211111) (3211111) (3111111) (4111111) (21111111) (22111111) (31111111) (211111111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],SameQ@@Length/@Split[#]&]=={}&]],{n,0,15}]
Extensions
More terms from Bert Dobbelaere, Apr 26 2025