A382927 Smallest beginning of a sequence of exactly n consecutive palindromic primes, all ending with the same digit.
2, 181, 151, 131, 101, 11, 17471, 16661, 16561, 16361, 16061, 15551, 15451, 14741, 14341, 13931, 13831, 13331, 12821, 12721, 12421, 11411, 11311, 10601, 10501, 10301, 1884881, 1883881, 1881881, 1880881, 1879781, 1878781, 1876781, 1865681, 1856581, 1853581, 1851581
Offset: 1
Examples
a(6) = 11, because 11 initiates a sequence of exactly six consecutive palindromic primes: 11, 101, 131, 151, 181 and 191, each ending in the same digit 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
# with A002385 e.g. from the b-file for that sequence R:= NULL: d:= 2: count:= 1: m:= 1; for i from 2 while m < 100 do dp:= A002385[i] mod 10; if d = dp then count:= count+1 else d:= dp; if count >= m then R:= R, seq(A002385[i-j],j=m..count); m:= count+1; fi; count:= 1; fi od: R; # Robert Israel, May 13 2025
-
Python
from sympy import isprime from itertools import count, islice, product def palprimes(): # generator of palprimes yield from [2, 3, 5, 7, 11] for d in count(3, 2): for last in "1379": for p in product("0123456789", repeat=d//2-1): left = "".join(p) for mid in [[""], "0123456789"][d&1]: t = int(last + left + mid + left[::-1] + last) if isprime(t): yield t def agen(): # generator of terms adict, n, lastdigit, vlst = dict(), 1, 0, [2] for p in palprimes(): if p%10 == lastdigit: vlst.append(p) else: if len(vlst) >= n: for i in range(n, len(vlst)+1): if i not in adict: adict[i] = vlst[-i] while n in adict: yield adict[n]; n += 1 lastdigit, vlst = p%10, [p] print(list(islice(agen(), 40))) # Michael S. Branicky, Apr 13 2025