A382932 a(n) is the altitude of the Pythagorean triangle (A046083(A382931(n)), A046084(A382931(n)), A009000(A382931(n))).
12, 24, 36, 48, 60, 72, 60, 84, 96, 108, 120, 132, 120, 144, 156, 120, 168, 180, 192, 204, 216, 228, 240, 180, 252, 264, 276, 240, 288, 300, 168, 312, 324, 240, 336, 348, 360, 372, 384, 396, 420, 300, 408, 360, 420, 432, 444, 456, 468, 480, 360, 492, 504, 516
Offset: 1
Keywords
Examples
a(1) = 12 because the Pythagorean triangle (A046083(A382931(1)), A046084(A382931(1)), A009000(A382931(1))) = (A046083(7), A046084(7), A009000(7)) = (15, 20, 25) has the integer altitude 15*20/25 = 12.
Links
- Felix Huber, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Pythagorean Triple
Programs
-
Maple
A382932:=proc(H) # All hypotenuses <= H. local a,b,c,k,p,q,L,M; L:=[]; M:=[]; for p from 2 to floor(sqrt(H-1)) do for q to min(p-1,floor(sqrt(H-p^2))) do if gcd(p,q)=1 and is(p-q,odd) then a:=p^2-q^2; b:=2*p*q; c:=p^2+q^2; for k to iquo(H,c) do L:=[op(L),[k*c,k*max(a,b),k*a*b/c]] od fi od od; L:=sort(L); for k to nops(L) do if is(L[k,3],integer) then M:=[op(M),L[k,3]] fi od; return op(M) end proc; A382932(1075);
Comments