A382933 Numbers k such that k, 2*m +- 3 and 3*m +- 2 are all semiprimes.
451, 707, 871, 1313, 1537, 1819, 1921, 1969, 2155, 2195, 2533, 2599, 2885, 2993, 3265, 3817, 3883, 3953, 3997, 4069, 4105, 4385, 4555, 4607, 5599, 5755, 5771, 6155, 6415, 6773, 7157, 7453, 7979, 8185, 8213, 8251, 8321, 8333, 8399, 8531, 9055, 9077, 9167, 9335, 9647, 9953, 9977, 10121, 10537
Offset: 1
Keywords
Examples
a(3) = 871 because 871 = 13 * 67, 2 * 871 - 3 = 1739 = 37 * 47, 2 * 871 + 3 = 1745 = 5 * 349, 3 * 871 - 2 = 2611 = 7 * 373, and 3 * 871 + 2 = 2615 = 5 * 523 are all semiprimes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A001358.
Programs
-
Maple
filter:= m -> andmap(t -> numtheory:-bigomega(t)=2, [m,2*m-3,2*m+3,3*m-2,3*m+2]): select(filter, [seq(i,i=1..20000,2)]);
-
Mathematica
s = {}; Do [ If [ {2, 2, 2, 2, 2} == PrimeOmega [{m, 2*m - 3, 2*m + 3, 3*m - 2, 3*m + 2}], AppendTo [s, m]], {m, 5, 10^4, 2}]; s
Comments