cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382933 Numbers k such that k, 2*m +- 3 and 3*m +- 2 are all semiprimes.

Original entry on oeis.org

451, 707, 871, 1313, 1537, 1819, 1921, 1969, 2155, 2195, 2533, 2599, 2885, 2993, 3265, 3817, 3883, 3953, 3997, 4069, 4105, 4385, 4555, 4607, 5599, 5755, 5771, 6155, 6415, 6773, 7157, 7453, 7979, 8185, 8213, 8251, 8321, 8333, 8399, 8531, 9055, 9077, 9167, 9335, 9647, 9953, 9977, 10121, 10537
Offset: 1

Views

Author

Zak Seidov and Robert Israel, Apr 15 2025

Keywords

Comments

All terms are odd.
The first term that is a square is a(241) = 49729 = 223^2.

Examples

			a(3) = 871 because 871 = 13 * 67,
2 * 871 - 3 = 1739 = 37 * 47,
2 * 871 + 3 = 1745 = 5 * 349,
3 * 871 - 2 = 2611 = 7 * 373, and
3 * 871 + 2 = 2615 = 5 * 523 are all semiprimes.
		

Crossrefs

Cf. A001358.

Programs

  • Maple
    filter:= m -> andmap(t -> numtheory:-bigomega(t)=2, [m,2*m-3,2*m+3,3*m-2,3*m+2]):
    select(filter, [seq(i,i=1..20000,2)]);
  • Mathematica
    s = {}; Do [ If [ {2, 2, 2, 2, 2} == PrimeOmega [{m, 2*m - 3, 2*m
    + 3, 3*m - 2, 3*m + 2}], AppendTo [s, m]], {m, 5, 10^4, 2}]; s