A382955 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = [x^n * y^k] Product_{p prime} (1 + x^p + y^p).
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 2, 0, 1, 2, 0, 2, 0, 2, 1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 1, 0, 2, 0, 2, 0, 1, 1, 0, 2
Offset: 0
Examples
Square array begins: 1, 0, 1, 1, 0, 2, 0, 2, 1, 1, ... 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, ... 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, ... 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 2, 0, 1, 1, 0, 2, 0, 2, 0, 1, ... 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 2, 0, 1, 2, 0, 2, 0, 2, 1, 0, ... 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, ... 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Formula
A(n,k) = A(k,n).