A382993 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = -(1/n) * Sum_{d|n} phi(n/d) * (-k)^d.
1, 2, 0, 3, -1, 1, 4, -3, 4, 0, 5, -6, 11, -4, 1, 6, -10, 24, -21, 8, 0, 7, -15, 45, -66, 51, -10, 1, 8, -21, 76, -160, 208, -119, 20, 0, 9, -28, 119, -330, 629, -676, 315, -34, 1, 10, -36, 176, -609, 1560, -2590, 2344, -831, 60, 0, 11, -45, 249, -1036, 3367, -7750, 11165, -8226, 2195, -100, 1
Offset: 1
Examples
Square array begins: 1, 2, 3, 4, 5, 6, 7, ... 0, -1, -3, -6, -10, -15, -21, ... 1, 4, 11, 24, 45, 76, 119, ... 0, -4, -21, -66, -160, -330, -609, ... 1, 8, 51, 208, 629, 1560, 3367, ... 0, -10, -119, -676, -2590, -7750, -19565, ... 1, 20, 315, 2344, 11165, 39996, 117655, ...
Crossrefs
Programs
-
PARI
a(n, k) = -sumdiv(n, d, eulerphi(n/d)*(-k)^d)/n;
Formula
A(n,k) = (1/n) * A382994(n,k).
A(n,k) = -(1/n) * Sum_{j=1..n} (-k)^gcd(n,j).
G.f. of column k: Sum_{j>=1} phi(j) * log(1 + k*x^j) / j.
Product_{n>=1} 1/(1 - x^n)^A(n,k) = Product_{n>=1} (1 + k*x^n).