A382994 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = -Sum_{d|n} phi(n/d) * (-k)^d.
1, 2, 0, 3, -2, 3, 4, -6, 12, 0, 5, -12, 33, -16, 5, 6, -20, 72, -84, 40, 0, 7, -30, 135, -264, 255, -60, 7, 8, -42, 228, -640, 1040, -714, 140, 0, 9, -56, 357, -1320, 3145, -4056, 2205, -272, 9, 10, -72, 528, -2436, 7800, -15540, 16408, -6648, 540, 0
Offset: 1
Examples
Square array begins: 1, 2, 3, 4, 5, 6, 7, ... 0, -2, -6, -12, -20, -30, -42, ... 3, 12, 33, 72, 135, 228, 357, ... 0, -16, -84, -264, -640, -1320, -2436, ... 5, 40, 255, 1040, 3145, 7800, 16835, ... 0, -60, -714, -4056, -15540, -46500, -117390, ... 7, 140, 2205, 16408, 78155, 279972, 823585, ...
Programs
-
PARI
a(n, k) = -sumdiv(n, d, eulerphi(n/d)*(-k)^d);
Formula
A(n,k) = -Sum_{j=1..n} (-k)^gcd(n,j).
G.f. of column k: k * Sum_{j>=1} phi(j) * x^j / (1 + k*x^j).