A382995 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = Sum_{d|n} phi(n/d) * (-k)^(d-1).
1, 1, 0, 1, -1, 3, 1, -2, 6, 0, 1, -3, 11, -8, 5, 1, -4, 18, -28, 20, 0, 1, -5, 27, -66, 85, -30, 7, 1, -6, 38, -128, 260, -238, 70, 0, 1, -7, 51, -220, 629, -1014, 735, -136, 9, 1, -8, 66, -348, 1300, -3108, 4102, -2216, 270, 0, 1, -9, 83, -518, 2405, -7750, 15631, -16452, 6585, -500, 11
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, ... 0, -1, -2, -3, -4, -5, -6, ... 3, 6, 11, 18, 27, 38, 51, ... 0, -8, -28, -66, -128, -220, -348, ... 5, 20, 85, 260, 629, 1300, 2405, ... 0, -30, -238, -1014, -3108, -7750, -16770, ... 7, 70, 735, 4102, 15631, 46662, 117655, ...
Crossrefs
Programs
-
PARI
a(n, k) = sumdiv(n, d, eulerphi(n/d)*(-k)^(d-1));
Formula
A(n,k) = (1/k) * A382994(n,k).
A(n,k) = Sum_{j=1..n} (-k)^(gcd(n,j) - 1).
G.f. of column k: Sum_{j>=1} phi(j) * x^j / (1 + k*x^j).