cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382996 a(n) is the least number k such that both k and k + s have n prime divisors, counted with multiplicity, where s is the sum of the decimal digits of k.

Original entry on oeis.org

11, 15, 18, 81, 243, 486, 2976, 25488, 128768, 396864, 911232, 8820864, 69940224, 118462464, 1171768320, 1756943946, 11753349120, 272313556992, 491737042890, 2374758457344, 9766784434176, 22675979501496, 269744252387328, 1546075329527736, 6138628058382336
Offset: 1

Views

Author

Robert Israel, May 06 2025

Keywords

Comments

a(n) <= A383665(n) if A383665(n) exists.

Examples

			a(4) = 81 because 81 has sum of digits 9, both 81 = 3^4 and 81 + 9 = 90 = 2 * 3^2 * 5 have 4 prime divisors, counted with multiplicity, and no number smaller than 81 works.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) uses priqueue; local pq, t,x,s,p,i;
          initialize(pq);
          insert([-2^n, 2$n], pq);
          do
            t:= extract(pq);
            x:= -t[1];
            s:= convert(convert(x,base,10),`+`);
            if numtheory:-bigomega(x+s) = n then return x fi;
            p:= nextprime(t[-1]);
            for i from n+1 to 2 by -1 while t[i] = t[-1] do
              insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]), p$(n+2-i)], pq)
            od;
          od;
    end proc:
    map(f, [$1..20]);
  • PARI
    generate(A, B, n, k) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p, ceil(A/m)), B\m, if(bigomega(m*q+sumdigits(m*q)) == k, listput(list, m*q))), forprime(q=p, sqrtnint(B\m, n), list=concat(list, f(m*q, q, n-1)))); list); vecsort(Vec(f(1, 2, n)));
    a(n) = my(x=2^n, y=2*x); while(1, my(v=generate(x, y, n, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, May 24 2025

Formula

A001222(a(n)) = A001222(A062028(a(n))) = n.

Extensions

a(21)-a(22) from Michael S. Branicky, May 08 2025
a(23)-a(25) from Daniel Suteu, May 24 2025