cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A383004 Exponent of the highest power of 2 dividing the n-th cubefree number.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1
Offset: 1

Views

Author

Amiram Eldar, Apr 12 2025

Keywords

Crossrefs

Programs

  • Mathematica
    cubeFreeQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # < 3 &]; IntegerExponent[Select[Range[200], cubeFreeQ], 2]
  • PARI
    iscubefree(n) = {my(f = factor(n)); for(i=1, #f~, if(f[i, 2] > 2, return (0))); 1; }
    list(lim) = for(k = 1, lim, if(iscubefree(k), print1(valuation(k, 2), ", ")));

Formula

a(n) = A007814(A004709(n)).
A383009(a(n)) > 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4/7.

A383008 Indices of the even terms in the sequence of squarefree numbers.

Original entry on oeis.org

2, 5, 7, 10, 15, 17, 19, 22, 25, 28, 30, 36, 39, 41, 44, 47, 49, 51, 54, 59, 63, 66, 69, 72, 74, 76, 80, 83, 85, 88, 91, 94, 97, 102, 104, 106, 108, 111, 114, 116, 119, 124, 127, 129, 132, 135, 138, 140, 143, 148, 151, 156, 159, 161, 164, 169, 171, 173, 176, 178
Offset: 1

Views

Author

Amiram Eldar, Apr 12 2025

Keywords

Comments

The asymptotic density of this sequence is 1/3.

Crossrefs

Programs

  • Mathematica
    Position[Select[Range[350], SquareFreeQ], _?EvenQ] // Flatten
  • PARI
    list(lim) = {my(c = 0); for(k = 1, lim, if(issquarefree(k), c++; if(!(k % 2), print1(c, ", "))));}

Formula

A005117(a(n)) = A039956(n).
A373550(a(n)) = 0.
Showing 1-2 of 2 results.