cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A383005 Exponent of the highest power of 2 dividing the n-th biquadratefree number.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0
Offset: 1

Views

Author

Amiram Eldar, Apr 12 2025

Keywords

Comments

First differs from A254990 at n = 31.

Crossrefs

Programs

  • Mathematica
    biqFreeQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # < 4 &]; IntegerExponent[Select[Range[200], biqFreeQ], 2]
  • PARI
    isbiqfree(n) = {my(f = factor(n)); for(i=1, #f~, if(f[i, 2] > 3, return (0))); 1; }
    list(lim) = for(k = 1, lim, if(isbiqfree(k), print1(valuation(k, 2), ", ")));

Formula

a(n) = A007814(A046100(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 11/15.
In general, the asymptotic mean of the exponent of the highest power of 2 dividing the n-th k-free number (number that is not divisible by a k-th power other than 1), for k >= 2, is 1 - k/(2^k-1).

A383009 Indices of the even terms in the sequence of cubefree numbers.

Original entry on oeis.org

2, 4, 6, 9, 11, 13, 16, 18, 20, 23, 24, 26, 29, 31, 33, 36, 38, 40, 43, 45, 49, 51, 53, 56, 58, 60, 63, 65, 67, 69, 71, 73, 76, 78, 80, 83, 85, 87, 90, 93, 96, 98, 100, 103, 105, 106, 109, 111, 113, 115, 117, 119, 122, 124, 126, 129, 131, 133, 137, 139, 142, 144
Offset: 1

Views

Author

Amiram Eldar, Apr 12 2025

Keywords

Comments

The asymptotic density of this sequence is 3/7.
In general, the asymptotic density of the indices of the even terms in the sequence of k-free numbers (numbers that are not divisible by a k-th power other than 1), for k >= 2, is (2^(k-1)-1)/(2^k-1).

Crossrefs

Programs

  • Mathematica
    cubeFreeQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # < 3 &]; Position[Select[Range[250], cubeFreeQ], _?EvenQ] // Flatten
  • PARI
    iscubefree(n) = {my(f = factor(n)); for(i=1, #f~, if(f[i, 2] > 2, return (0))); 1; }
    list(lim) = {my(c = 0); for(k = 1, lim, if(iscubefree(k), c++; if(!(k % 2), print1(c, ", ")))); }

Formula

A383004(a(n)) > 0.

A386536 Exponent of the highest power of 2 dividing the n-th number that is cubefree but not squarefree.

Original entry on oeis.org

2, 0, 2, 1, 2, 0, 2, 2, 2, 0, 0, 1, 2, 2, 0, 2, 0, 2, 2, 1, 2, 1, 0, 2, 2, 0, 0, 2, 1, 2, 2, 0, 2, 1, 0, 2, 2, 0, 0, 2, 0, 2, 2, 2, 1, 2, 0, 2, 2, 0, 2, 1, 2, 1, 2, 0, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 1, 2, 0, 2, 0, 2, 0, 1, 2, 1, 2, 1, 2, 0, 0, 2, 0, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Jul 25 2025

Keywords

Crossrefs

Programs

  • Mathematica
    IntegerExponent[Select[Range[400], Max[FactorInteger[#][[;; , 2]]] == 2 &], 2]
  • PARI
    list(lim) = for(k = 1, lim, if(k > 1 && vecmax(factor(k)[,2]) == 2, print1(valuation(k, 2), ", ")));
    
  • Python
    from math import isqrt
    from sympy import integer_nthroot, mobius
    def A386536(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while f(kmin) < kmin: kmin >>= 1		
            kmin = max(kmin,kmax >> 1)
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+sum(mobius(k)*(x//k**2-x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))+sum(mobius(k)*(x//k**2) for k in range(integer_nthroot(x,3)[0]+1,isqrt(x)+1)))
        return ((m:=bisection(f,n,n))-1&~m).bit_length() # Chai Wah Wu, Jul 25 2025

Formula

a(n) = A007814(A067259(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (4/(7*zeta(3)) - 1/(3*zeta(2)))/(1/zeta(3) - 1/zeta(2)) = 1.2176665... .

A386537 Exponent of the highest power of 2 dividing the n-th number whose prime factorization exponents are all powers of 2 (A138302).

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 25 2025

Keywords

Crossrefs

Programs

  • Mathematica
    exp2nQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # == 2^IntegerExponent[#, 2] &];
    IntegerExponent[Select[Range[200], exp2nQ], 2]
  • PARI
    isexp2n(n) = {my(f = factor(n)); for(i=1, #f~, if(f[i, 2] >> valuation(f[i, 2], 2) > 1, return (0))); 1;}
    list(lim) = for(k = 1, lim, if(isexp2n(k), print1(valuation(k, 2), ", ")));

Formula

a(n) = A007814(A138302(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1 + Sum_{k>=0} (2^k + 1)/2^(2^k)) / (1 + Sum_{k>=0} 1/2^(2^k)) - 1 = 0.70550483007968767769... .
Showing 1-4 of 4 results.