cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A383003 a(n) = Sum_{d|n} (-n)^(d-1).

Original entry on oeis.org

1, -1, 10, -67, 626, -7745, 117650, -2097671, 43046803, -999990009, 25937424602, -743008621115, 23298085122482, -793714765724621, 29192926025441476, -1152921504875286543, 48661191875666868482, -2185911559727678460653, 104127350297911241532842
Offset: 1

Views

Author

Seiichi Manyama, Apr 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, (-n)^(d-1));

Formula

a(n) = (1/n) * A383010(n).
a(n) = [x^n] Sum_{k>=1} log(1 + n*x^k) / k.
a(n) = [x^n] Sum_{k>=1} x^k / (1 + n*x^k).

A382997 a(n) = -Sum_{d|n} phi(n/d) * (-n)^d.

Original entry on oeis.org

1, -2, 33, -264, 3145, -46500, 823585, -16781408, 387422001, -9999900360, 285311670721, -8916103472496, 302875106592409, -11112006720145604, 437893890382391745, -18446744078004650880, 827240261886336764449, -39346408075098246299676, 1978419655660313589124321
Offset: 1

Views

Author

Seiichi Manyama, Apr 12 2025

Keywords

Crossrefs

Main diagonal of A382994.

Programs

  • PARI
    a(n) = -sumdiv(n, d, eulerphi(n/d)*(-n)^d);

Formula

a(n) = -Sum_{k=1..n} (-n)^gcd(n,k).
Showing 1-2 of 2 results.