A383011 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = -(1/n) * Sum_{d|n} mu(n/d) * (-k)^d.
1, 2, -1, 3, -3, 0, 4, -6, 2, 0, 5, -10, 8, -3, 0, 6, -15, 20, -18, 6, 0, 7, -21, 40, -60, 48, -11, 0, 8, -28, 70, -150, 204, -124, 18, 0, 9, -36, 112, -315, 624, -690, 312, -30, 0, 10, -45, 168, -588, 1554, -2620, 2340, -810, 56, 0, 11, -55, 240, -1008, 3360, -7805, 11160, -8160, 2184, -105, 0
Offset: 1
Examples
Square array begins: 1, 2, 3, 4, 5, 6, 7, ... -1, -3, -6, -10, -15, -21, -28, ... 0, 2, 8, 20, 40, 70, 112, ... 0, -3, -18, -60, -150, -315, -588, ... 0, 6, 48, 204, 624, 1554, 3360, ... 0, -11, -124, -690, -2620, -7805, -19656, ... 0, 18, 312, 2340, 11160, 39990, 117648, ...
Crossrefs
Programs
-
PARI
a(n, k) = -sumdiv(n, d, moebius(n/d)*(-k)^d)/n;
Formula
G.f. of column k: Sum_{j>=1} mu(j) * log(1 + k*x^j) / j.
Product_{n>=1} 1/(1 - x^n)^A(n,k) = 1 + k*x.