A383042 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) is the n-th term of the inverse Euler transform of j-> k^(j-1).
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 3, 0, 1, 4, 12, 15, 6, 0, 1, 5, 20, 42, 42, 9, 0, 1, 6, 30, 90, 156, 107, 18, 0, 1, 7, 42, 165, 420, 554, 294, 30, 0, 1, 8, 56, 273, 930, 1910, 2028, 780, 56, 0, 1, 9, 72, 420, 1806, 5155, 8820, 7350, 2128, 99, 0
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, ... 0, 2, 6, 12, 20, 30, 42, ... 0, 3, 15, 42, 90, 165, 273, ... 0, 6, 42, 156, 420, 930, 1806, ... 0, 9, 107, 554, 1910, 5155, 11809, ... 0, 18, 294, 2028, 8820, 28830, 77658, ... ...
Links
- Christian G. Bower, PARI programs for transforms, 2007.
- N. J. A. Sloane, Maple programs for transforms, 2001-2020.
Crossrefs
Programs
-
PARI
a(n, k) = sumdiv(n, d, moebius(n/d)*(k^d-(k-1)^d))/n;