A383050 a(n) = Sum_{k=0..n} (k+1)^6 * Stirling1(n,k).
1, 64, 665, 2037, -1316, -1148, 16400, -116032, 809592, -6059424, 49512792, -442266888, 4302605280, -45351578400, 515054655360, -6268075470720, 81309027784320, -1118525784929280, 16235659302272640, -247395991797912960, 3936073920965890560, -64988868076072657920
Offset: 0
Keywords
Links
- Christian G. Bower, PARI programs for transforms, 2007.
- N. J. A. Sloane, Maple programs for transforms, 2001-2020.
Crossrefs
Column k=6 of A383049.
Programs
-
PARI
a(n) = sum(k=0, n, (k+1)^6*stirling(n, k, 1));
-
PARI
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^6*log(1+x)^k/k!)))
Formula
E.g.f.: Sum_{k>=0} (k+1)^6 * log(1+x)^k / k!.
E.g.f.: (1+x) * Sum_{k=0..6} Stirling2(7,k+1) * log(1+x)^k.
Comments