cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383050 a(n) = Sum_{k=0..n} (k+1)^6 * Stirling1(n,k).

Original entry on oeis.org

1, 64, 665, 2037, -1316, -1148, 16400, -116032, 809592, -6059424, 49512792, -442266888, 4302605280, -45351578400, 515054655360, -6268075470720, 81309027784320, -1118525784929280, 16235659302272640, -247395991797912960, 3936073920965890560, -64988868076072657920
Offset: 0

Views

Author

Seiichi Manyama, Apr 14 2025

Keywords

Comments

Inverse Stirling transform of (n+1)^6.

Crossrefs

Column k=6 of A383049.

Programs

  • PARI
    a(n) = sum(k=0, n, (k+1)^6*stirling(n, k, 1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^6*log(1+x)^k/k!)))

Formula

E.g.f.: Sum_{k>=0} (k+1)^6 * log(1+x)^k / k!.
E.g.f.: (1+x) * Sum_{k=0..6} Stirling2(7,k+1) * log(1+x)^k.