cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A382465 Positive integers such that every even digit except the first is immediately preceded by a smaller digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 41, 43, 45, 46, 47, 48, 49, 51, 53, 55, 56, 57, 58, 59, 61, 63, 65, 67, 68, 69, 71, 73, 75, 77, 78, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99
Offset: 1

Views

Author

Paolo Xausa, Mar 28 2025

Keywords

Comments

Conjecture: these are the terms of A382462, sorted.

Crossrefs

Programs

  • Mathematica
    A382465Q[k_] := FreeQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?EvenQ} /; i >= j];
    Select[Range[100], A382465Q]
  • Python
    def ok(n):
        s = str(n)
        return n and all(d not in "02468" or s[i-1] 0)
    print([k for k in range(100) if ok(k)]) # Michael S. Branicky, Apr 30 2025

A383061 Positive integers that contain an odd digit d immediately preceded by a digit >= d.

Original entry on oeis.org

11, 21, 31, 33, 41, 43, 51, 53, 55, 61, 63, 65, 71, 73, 75, 77, 81, 83, 85, 87, 91, 93, 95, 97, 99, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 131, 133, 141, 143, 151, 153, 155, 161, 163, 165, 171, 173, 175, 177, 181, 183, 185, 187, 191, 193, 195, 197, 199
Offset: 1

Views

Author

Paolo Xausa, Apr 18 2025

Keywords

Comments

Conjecture: these are the numbers missing from A383059.

Crossrefs

Programs

  • Mathematica
    A383061Q[k_] := MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i >= j];
    Select[Range[200], A383061Q]
  • Python
    def ok(n):
        s = str(n)
        return any(s[i] <= s[i-1] for i in range(1, len(s)) if s[i] in "13579")
    print([k for k in range(200) if ok(k)]) # Michael S. Branicky, Apr 19 2025

A382938 Nonnegative integers such that every odd digit except the leftmost is immediately preceded by a larger digit.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 30, 31, 32, 34, 36, 38, 40, 41, 42, 43, 44, 46, 48, 50, 51, 52, 53, 54, 56, 58, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Paolo Xausa, Apr 14 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A382938Q[k_] := FreeQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i <= j];
    Select[Range[0, 100], A382938Q]
  • Python
    def ok(n):
        s = str(n)
        return all(s[i+1] < s[i] for i in range(len(s)-1) if s[i+1] in "13579")
    print([k for k in range(96) if ok(k)]) # Michael S. Branicky, Apr 14 2025

A383246 Positive integers without the digit 0 such that every even digit except the rightmost is immediately followed by a smaller digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 91, 92, 93, 94, 95, 96, 97, 98, 99
Offset: 1

Views

Author

Paolo Xausa, Apr 20 2025

Keywords

Comments

Conjecture: these are the terms of A342043, sorted.

Crossrefs

Programs

  • Mathematica
    A383246Q[k_] := FreeQ[#, 0] && FreeQ[Partition[#, 2, 1], {i_?EvenQ, j_} /; j >= i] &  [IntegerDigits[k]];
    Select[Range[200], A383246Q]
  • Python
    def ok(n):
        s = str(n)
        return "0" not in s and all(d not in "02468" or s[i]Michael S. Branicky, Apr 28 2025

A383248 Nonnegative integers without the digit 9 such that every odd digit except the rightmost is immediately followed by a larger digit.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 120, 121, 122, 123, 124, 125, 126, 127, 128
Offset: 1

Views

Author

Paolo Xausa, Apr 25 2025

Keywords

Comments

Conjecture: these are the terms of A342044, sorted.

Crossrefs

Programs

  • Mathematica
    A383248Q[k_] := FreeQ[#, 9] && FreeQ[Partition[#, 2, 1], {i_?OddQ, j_} /; j <= i] & [IntegerDigits[k]];
    Select[Range[0, 200], A383248Q]
  • Python
    def ok(n):
        s = str(n)
        return "9" not in s and all(d not in "13579" or s[i]>d for i, d in enumerate(s, 1) if i < len(s))
    print([k for k in range(129) if ok(k)]) # Michael S. Branicky, Apr 28 2025

A383250 Nonnegative integers not ending with the digit 1 and such that every odd digit except the rightmost is immediately followed by a smaller digit.

Original entry on oeis.org

0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 100, 102, 103
Offset: 1

Views

Author

Paolo Xausa, Apr 26 2025

Keywords

Comments

Conjecture: these are the terms of A342045, sorted.
From Quinn Savitt, Apr 29 2025: (Start)
Theorem: These are the terms of A342045, sorted.
The proof formally defines an extendibility condition: a finite set of selected numbers remains extendible if, for every finite subset, there exists a new number satisfying the "odd digit implies next smaller digit" rule and not ending in 1.
Using induction and monotonicity of extendibility, it follows that every number satisfying these conditions eventually appears in the greedy construction of A342045. This implies that the sequence is a sorted version of A342045. (End)

Crossrefs

Programs

  • Mathematica
    A383250Q[k_] := Last[#] != 1 && FreeQ[Partition[#, 2, 1], {i_?OddQ, j_} /; j >= i] & [IntegerDigits[k]];
    Select[Range[0, 200], A383250Q]
  • Python
    def ok(n):
        if n%10 == 1: return False
        s = str(n)
        return all(d in "02468" or s[i]Michael S. Branicky, Apr 28 2025

A383059 Lexicographically earliest sequence of distinct nonnegative integers such that if a digit d in the digit stream (ignoring commas) is odd, the previous digit is < d.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 10, 12, 22, 23, 24, 25, 26, 27, 28, 29, 40, 13, 42, 30, 14, 44, 45, 46, 47, 48, 49, 60, 15, 62, 32, 34, 50, 16, 64, 52, 35, 66, 67, 68, 69, 80, 17, 82, 36, 70, 18, 84, 54, 56, 72, 37, 86, 74, 57, 88, 89, 200, 19, 201, 38, 90, 39, 202, 58
Offset: 1

Views

Author

Paolo Xausa, Apr 18 2025

Keywords

Comments

Could be summarized as "odd digit, previous smaller". A variant of A342042.

Crossrefs

Programs

  • Mathematica
    A383059list[nmax_] := Module[{a, s, invQ, fu = 1},
      invQ[k_] := invQ[k] = (If[#, s[k] = #]; #) & [MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i >= j]];
      s[_] := False; s[0] = True;
      NestList[(a = fu; While[s[a] || invQ[a] || invQ[# + First[IntegerDigits[a]]], a++] & [Mod[#, 10]*10]; While[s[fu], fu++]; s[a] = True; a) &, 0, nmax - 1]];
    A383059list[100]
  • Python
    from itertools import count, islice
    def cond(s):
        return all(s[i] > s[i-1] for i in range(1, len(s)) if s[i] in "13579")
    def agen(): # generator of terms
        an, seen, s, m = 0, {0}, "0", 1
        while True:
            yield an
            an = next(k for k in count(m) if k not in seen and cond(s[-1]+str(k)))
            seen.add(an); s += str(an)
            while m in seen or not cond(str(m)): m += 1
    print(list(islice(agen(), 70))) # Michael S. Branicky, Apr 19 2025

A383501 Nonnegative integers without the digit 9 such that every odd digit except the leftmost is immediately preceded by a larger digit.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 30, 31, 32, 34, 36, 38, 40, 41, 42, 43, 44, 46, 48, 50, 51, 52, 53, 54, 56, 58, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 100, 102, 104, 106, 108
Offset: 1

Views

Author

Paolo Xausa, Apr 29 2025

Keywords

Comments

Conjecture: these are the terms of A382935, sorted.

Crossrefs

Programs

  • Mathematica
    A383501Q[k_] := FreeQ[#, 9] && FreeQ[Partition[#, 2, 1], {i_, j_?OddQ} /; i <= j] & [IntegerDigits[k]];
    Select[Range[0, 200], A383501Q]
  • Python
    def ok(n):
        s = str(n)
        return "9" not in s and all(d not in "13579" or s[i-1]>d for i, d in enumerate(s) if i > 0)
    print([k for k in range(134) if ok(k)]) # Michael S. Branicky, Apr 29 2025
Showing 1-8 of 8 results.