cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A382465 Positive integers such that every even digit except the first is immediately preceded by a smaller digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 41, 43, 45, 46, 47, 48, 49, 51, 53, 55, 56, 57, 58, 59, 61, 63, 65, 67, 68, 69, 71, 73, 75, 77, 78, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99
Offset: 1

Views

Author

Paolo Xausa, Mar 28 2025

Keywords

Comments

Conjecture: these are the terms of A382462, sorted.

Crossrefs

Programs

  • Mathematica
    A382465Q[k_] := FreeQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?EvenQ} /; i >= j];
    Select[Range[100], A382465Q]
  • Python
    def ok(n):
        s = str(n)
        return n and all(d not in "02468" or s[i-1] 0)
    print([k for k in range(100) if ok(k)]) # Michael S. Branicky, Apr 30 2025

A383062 Nonnegative integers such that every odd digit except the leftmost is immediately preceded by a smaller digit.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 52, 54, 56, 57, 58, 59, 60, 62, 64, 66, 67, 68, 69, 70, 72, 74, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90
Offset: 1

Views

Author

Paolo Xausa, Apr 18 2025

Keywords

Comments

Conjecture: these are the terms of A383059, sorted.

Crossrefs

Programs

  • Mathematica
    A383062Q[k_] := FreeQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i >= j];
    Select[Range[0, 100], A383062Q]
  • Python
    def ok(n):
        s = str(n)
        return all(s[i+1] > s[i] for i in range(len(s)-1) if s[i+1] in "13579")
    print([k for k in range(91) if ok(k)]) # Michael S. Branicky, Apr 19 2025

A382938 Nonnegative integers such that every odd digit except the leftmost is immediately preceded by a larger digit.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 30, 31, 32, 34, 36, 38, 40, 41, 42, 43, 44, 46, 48, 50, 51, 52, 53, 54, 56, 58, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Paolo Xausa, Apr 14 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A382938Q[k_] := FreeQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i <= j];
    Select[Range[0, 100], A382938Q]
  • Python
    def ok(n):
        s = str(n)
        return all(s[i+1] < s[i] for i in range(len(s)-1) if s[i+1] in "13579")
    print([k for k in range(96) if ok(k)]) # Michael S. Branicky, Apr 14 2025

A383246 Positive integers without the digit 0 such that every even digit except the rightmost is immediately followed by a smaller digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 91, 92, 93, 94, 95, 96, 97, 98, 99
Offset: 1

Views

Author

Paolo Xausa, Apr 20 2025

Keywords

Comments

Conjecture: these are the terms of A342043, sorted.

Crossrefs

Programs

  • Mathematica
    A383246Q[k_] := FreeQ[#, 0] && FreeQ[Partition[#, 2, 1], {i_?EvenQ, j_} /; j >= i] &  [IntegerDigits[k]];
    Select[Range[200], A383246Q]
  • Python
    def ok(n):
        s = str(n)
        return "0" not in s and all(d not in "02468" or s[i]Michael S. Branicky, Apr 28 2025

A382935 Lexicographically earliest sequence of distinct nonnegative integers such that if a digit d in the digit stream (ignoring commas) is odd, the previous digit is > d.

Original entry on oeis.org

0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 20, 21, 22, 12, 14, 16, 18, 24, 26, 28, 30, 40, 41, 42, 43, 44, 31, 46, 32, 48, 34, 36, 38, 50, 60, 61, 62, 63, 64, 65, 66, 51, 68, 52, 80, 81, 82, 83, 84, 85, 86, 53, 87, 54, 88, 56, 58, 70, 200, 202, 100, 204, 102, 104, 106, 108, 71, 206, 120, 208
Offset: 1

Views

Author

Paolo Xausa, Apr 14 2025

Keywords

Comments

Could be summarized as "odd digit, previous bigger". A variant of A342042.
No term contains the digit 9.

Crossrefs

Programs

  • Mathematica
    A382935list[nmax_] := Module[{a, s, invQ, fu = 1},
      invQ[k_] := invQ[k] = (If[#, s[k] = #]; #) & [MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i <= j]];
      s[_] := False; s[0] = True;
      NestList[(a = fu; While[s[a] || invQ[a] || invQ[# + First[IntegerDigits[a]]], a++] & [Max[Mod[#, 10], 1]*10]; While[s[fu], fu++]; s[a] = True; a) &, 0, nmax - 1]];
    A382935list[100]
  • Python
    from itertools import count, islice
    def cond(s):
        return all(s[i+1] < s[i] for i in range(len(s)-1) if s[i+1] in "13579")
    def agen(): # generator of terms
        an, seen, s, m = 0, {0}, "0", 1
        while True:
            yield an
            an = next(k for k in count(m) if k not in seen and cond(s[-1]+str(k)))
            seen.add(an); s += str(an)
            while m in seen or not cond(str(m)): m += 1
    print(list(islice(agen(), 70))) # Michael S. Branicky, Apr 14 2025

A383500 Positive integers that contain the digit 9, or an odd digit d immediately preceded by a digit <= d.

Original entry on oeis.org

9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 33, 35, 37, 39, 45, 47, 49, 55, 57, 59, 67, 69, 77, 79, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 107, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137
Offset: 1

Views

Author

Paolo Xausa, Apr 29 2025

Keywords

Comments

Conjecture: these are the numbers missing from A382935.
Theorem: This sequence is the complement of A382935. - Quinn Savitt, May 08 2025

Crossrefs

Programs

  • Mathematica
    A383500Q[k_] := MemberQ[#, 9] || MemberQ[Partition[#, 2, 1], {i_, j_?OddQ} /; i <= j] & [IntegerDigits[k]];
    Select[Range[200], A383500Q]
  • Python
    def ok(n):
        s = str(n)
        return "9" in s or any(d in "13579" and s[i-1]<=d for i, d in enumerate(s) if i > 0)
    print([k for k in range(134) if ok(k)]) # Michael S. Branicky, Apr 29 2025
Showing 1-6 of 6 results.