cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A382464 Positive integers that contain an even digit d immediately preceded by a digit >= d.

Original entry on oeis.org

10, 20, 22, 30, 32, 40, 42, 44, 50, 52, 54, 60, 62, 64, 66, 70, 72, 74, 76, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 120, 122, 130, 132, 140, 142, 144, 150, 152, 154, 160, 162, 164, 166, 170, 172, 174, 176, 180
Offset: 1

Views

Author

Paolo Xausa, Mar 28 2025

Keywords

Comments

Conjecture: these are the numbers missing from A382462.

Crossrefs

Programs

  • Mathematica
    A382464Q[k_] := MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?EvenQ} /; i >= j];
    Select[Range[200], A382464Q]
  • Python
    def ok(n):
        s = str(n)
        return any(d in "02468" and s[i-1]>=d for i, d in enumerate(s) if i > 0)
    print([k for k in range(181) if ok(k)]) # Michael S. Branicky, Apr 30 2025

A383061 Positive integers that contain an odd digit d immediately preceded by a digit >= d.

Original entry on oeis.org

11, 21, 31, 33, 41, 43, 51, 53, 55, 61, 63, 65, 71, 73, 75, 77, 81, 83, 85, 87, 91, 93, 95, 97, 99, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 131, 133, 141, 143, 151, 153, 155, 161, 163, 165, 171, 173, 175, 177, 181, 183, 185, 187, 191, 193, 195, 197, 199
Offset: 1

Views

Author

Paolo Xausa, Apr 18 2025

Keywords

Comments

Conjecture: these are the numbers missing from A383059.

Crossrefs

Programs

  • Mathematica
    A383061Q[k_] := MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i >= j];
    Select[Range[200], A383061Q]
  • Python
    def ok(n):
        s = str(n)
        return any(s[i] <= s[i-1] for i in range(1, len(s)) if s[i] in "13579")
    print([k for k in range(200) if ok(k)]) # Michael S. Branicky, Apr 19 2025

A382937 Positive integers that contain an odd digit d immediately preceded by a digit <= d.

Original entry on oeis.org

11, 13, 15, 17, 19, 23, 25, 27, 29, 33, 35, 37, 39, 45, 47, 49, 55, 57, 59, 67, 69, 77, 79, 89, 99, 101, 103, 105, 107, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 145, 147, 149, 150
Offset: 1

Views

Author

Paolo Xausa, Apr 14 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A382937Q[k_] := MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i <= j];
    Select[Range[200], A382937Q]
  • Python
    def ok(n):
        s = str(n)
        return any(s[i+1] >= s[i] for i in range(len(s)-1) if s[i+1] in "13579")
    print([k for k in range(1, 151) if ok(k)]) # Michael S. Branicky, Apr 14 2025

A383245 Nonnegative integers that contain the digit 0, or an even digit d immediately followed by a digit >= d.

Original entry on oeis.org

0, 10, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 44, 45, 46, 47, 48, 49, 50, 60, 66, 67, 68, 69, 70, 80, 88, 89, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 140, 144, 145, 146, 147, 148, 149, 150, 160, 166
Offset: 1

Views

Author

Paolo Xausa, Apr 20 2025

Keywords

Comments

Conjecture: these are the numbers missing from A342043.

Crossrefs

Programs

  • Mathematica
    A383245Q[k_] := MemberQ[#, 0] || MemberQ[Partition[#, 2, 1], {i_?EvenQ, j_} /; j >= i] & [IntegerDigits[k]];
    Select[Range[0, 200], A383245Q]
  • Python
    def ok(n):
        if n%10 == 0: return True
        s = str(n)
        return any(d in "02468" and s[i]>=d for i, d in enumerate(s, 1) if i < len(s))
    print([k for k in range(167) if ok(k)]) # Michael S. Branicky, Apr 28 2025

A382935 Lexicographically earliest sequence of distinct nonnegative integers such that if a digit d in the digit stream (ignoring commas) is odd, the previous digit is > d.

Original entry on oeis.org

0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 20, 21, 22, 12, 14, 16, 18, 24, 26, 28, 30, 40, 41, 42, 43, 44, 31, 46, 32, 48, 34, 36, 38, 50, 60, 61, 62, 63, 64, 65, 66, 51, 68, 52, 80, 81, 82, 83, 84, 85, 86, 53, 87, 54, 88, 56, 58, 70, 200, 202, 100, 204, 102, 104, 106, 108, 71, 206, 120, 208
Offset: 1

Views

Author

Paolo Xausa, Apr 14 2025

Keywords

Comments

Could be summarized as "odd digit, previous bigger". A variant of A342042.
No term contains the digit 9.

Crossrefs

Programs

  • Mathematica
    A382935list[nmax_] := Module[{a, s, invQ, fu = 1},
      invQ[k_] := invQ[k] = (If[#, s[k] = #]; #) & [MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i <= j]];
      s[_] := False; s[0] = True;
      NestList[(a = fu; While[s[a] || invQ[a] || invQ[# + First[IntegerDigits[a]]], a++] & [Max[Mod[#, 10], 1]*10]; While[s[fu], fu++]; s[a] = True; a) &, 0, nmax - 1]];
    A382935list[100]
  • Python
    from itertools import count, islice
    def cond(s):
        return all(s[i+1] < s[i] for i in range(len(s)-1) if s[i+1] in "13579")
    def agen(): # generator of terms
        an, seen, s, m = 0, {0}, "0", 1
        while True:
            yield an
            an = next(k for k in count(m) if k not in seen and cond(s[-1]+str(k)))
            seen.add(an); s += str(an)
            while m in seen or not cond(str(m)): m += 1
    print(list(islice(agen(), 70))) # Michael S. Branicky, Apr 14 2025

A383501 Nonnegative integers without the digit 9 such that every odd digit except the leftmost is immediately preceded by a larger digit.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 30, 31, 32, 34, 36, 38, 40, 41, 42, 43, 44, 46, 48, 50, 51, 52, 53, 54, 56, 58, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 100, 102, 104, 106, 108
Offset: 1

Views

Author

Paolo Xausa, Apr 29 2025

Keywords

Comments

Conjecture: these are the terms of A382935, sorted.

Crossrefs

Programs

  • Mathematica
    A383501Q[k_] := FreeQ[#, 9] && FreeQ[Partition[#, 2, 1], {i_, j_?OddQ} /; i <= j] & [IntegerDigits[k]];
    Select[Range[0, 200], A383501Q]
  • Python
    def ok(n):
        s = str(n)
        return "9" not in s and all(d not in "13579" or s[i-1]>d for i, d in enumerate(s) if i > 0)
    print([k for k in range(134) if ok(k)]) # Michael S. Branicky, Apr 29 2025
Showing 1-6 of 6 results.