A383064 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of e.g.f. Sum_{j>=0} (j+1)^k * (-log(1-x))^j / j!.
1, 1, 1, 1, 2, 2, 1, 4, 5, 6, 1, 8, 13, 17, 24, 1, 16, 35, 51, 74, 120, 1, 32, 97, 161, 244, 394, 720, 1, 64, 275, 531, 854, 1392, 2484, 5040, 1, 128, 793, 1817, 3148, 5248, 9260, 18108, 40320, 1, 256, 2315, 6411, 12134, 20940, 36966, 70508, 149904, 362880
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 4, 8, 16, 32, 64, ... 2, 5, 13, 35, 97, 275, 793, ... 6, 17, 51, 161, 531, 1817, 6411, ... 24, 74, 244, 854, 3148, 12134, 48604, ... 120, 394, 1392, 5248, 20940, 87784, 384252, ... 720, 2484, 9260, 36966, 156680, 699894, 3274640, ...
Programs
-
PARI
a(n, k) = sum(j=0, n, j!*abs(stirling(n+1, j+1, 1))*stirling(k+1, j+1, 2));
Formula
See A344639.