A383104 Inverse Möbius transform of A382883.
1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0
Offset: 1
Keywords
Programs
-
Maple
# Seen as a special case of a transformation: A382883Transform := (b, len) -> local n, d; seq(add(A382883(n/d)*b(d), d in numtheory:-divisors(n)), n = 1..len): A382883Transform(n -> 1, 99);
-
Mathematica
V[n_, e_] := If[e == 1, 1, IntegerExponent[n, e]]; f[n_] := f[n] = -DivisorSum[n, V[n, #] * f[#] &, # < n &]; f[1] = 1; a[n_] := DivisorSum[n, f[#] &]; Array[a, 100] (* Amiram Eldar, Apr 29 2025 *)
-
SageMath
def a(n): return sum(A382883(n/d) for d in divisors(n)) print([a(n) for n in range(1, 90)]) # More general: def A382883Transform(n: int, b: Callable[[int], int]) -> int: return sum(A382883(n/d)*b(d) for d in divisors(n)) def a(n) -> int: return A382883Transform(n, lambda x: 1)
Formula
a(n) = Sum_{d|n} A382883(d).