cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383104 Inverse Möbius transform of A382883.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Peter Luschny, Apr 16 2025

Keywords

Crossrefs

Programs

  • Maple
    # Seen as a special case of a transformation:
    A382883Transform := (b, len) -> local n, d; seq(add(A382883(n/d)*b(d), d in numtheory:-divisors(n)), n = 1..len): A382883Transform(n -> 1, 99);
  • Mathematica
    V[n_, e_] := If[e == 1, 1, IntegerExponent[n, e]]; f[n_] := f[n] = -DivisorSum[n, V[n, #] * f[#] &, # < n &]; f[1] = 1; a[n_] := DivisorSum[n, f[#] &]; Array[a, 100] (* Amiram Eldar, Apr 29 2025 *)
  • SageMath
    def a(n): return sum(A382883(n/d) for d in divisors(n))
    print([a(n) for n in range(1, 90)])
    # More general:
    def A382883Transform(n: int, b: Callable[[int], int]) -> int:
        return sum(A382883(n/d)*b(d) for d in divisors(n))
    def a(n) -> int: return A382883Transform(n, lambda x: 1)

Formula

a(n) = Sum_{d|n} A382883(d).