A383135 a(n) = number of iterations that n requires to reach 1 under the x -> A380891(x) map, or -1 if it never does.
0, 1, 2, 1, 3, 1, 5, 2, 3, 2, 3, 2, 4, 2, 4, 2, 6, 2, 4, 2, 6, 2, 13, 2, 13, 2, 8, 3, 8, 3, 10, 3, 10, 3, 3, 3, 10, 3, 5, 3, 10, 3, 5, 3, 5, 3, 6, 3, 5, 3, 5, 3, 17, 3, 5, 3, 5, 3, 17, 3, 3, 3, 3, 2, 12, 2, 3, 2, 5, 2, 5, 2, 12, 2, 3, 2, 7, 2, 3, 2, 7, 2, 7, 2
Offset: 1
Keywords
Links
- James C. McMahon, Table of n, a(n) for n = 1..10000
- Vikram Prasad and M. A. Prasad, Estimates of the maximum excursion constant and stopping constant of juggler-like sequences, ResearchGate, 2025.
Programs
-
Mathematica
fj[n_]:=If[Mod[n,2]==0,Floor[Surd[n,3]],Floor[n^(4/3)]];a383135[n_]:= Length[ NestWhileList[fj, n, # != 1 &]] - 1; Array[ a383135, 84]
-
Python
import sys import gmpy2 sys.set_int_max_str_digits(0) def floorJuggler(n) : a=n count=0 while (a > 1) : b=0 if (a%2 == 0) : b1=gmpy2.iroot(a,3) b=b1[0] count=count+1 else : b1=gmpy2.iroot(a**4,3) b=b1[0] count=count+1 a=b return count for i in range (1, 100) : print (i, floorJuggler(i))
Comments