A381246 Largest value in trajectory of n under the juggler map of A380891.
1, 2, 4, 4, 8, 6, 30, 8, 18, 10, 24, 12, 30, 14, 36, 16, 150, 18, 50, 20, 1320, 22, 43366048, 24, 41678, 26, 350, 28, 41678, 30, 234421146, 32, 2438232, 34, 114, 36, 5184, 38, 132, 40, 124026, 42, 150, 44, 160, 46, 934, 48, 1008, 50, 1084, 52, 43366048, 54, 1240
Offset: 1
Keywords
Links
- James C. McMahon, Table of n, a(n) for n = 1..10000
- Vikram Prasad and M. A. Prasad, Estimates of the maximum excursion constant and stopping constant of juggler-like sequences, ResearchGate, 2025.
Programs
-
Mathematica
fj[n_]:=If[Mod[n,2]==0,Floor[Surd[n,3]],Floor[n^(4/3)]];a381246[n_]:=Max[Delete[FixedPointList[fj, n], -1]];Array[a381246,55]
-
Python
import sys import gmpy2 sys.set_int_max_str_digits(0) def floorJuggler(n): a=n max=n while a > 1: b=0 if a%2 == 0: b1=gmpy2.iroot(a,3) b=b1[0] else: b1=gmpy2.iroot(a**4,3) b=b1[0] a=b if a > max: max = a return max maxcount=0 for i in range (1, 100): print (i, floorJuggler(i))
Comments